Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Huy Cuong Vu Do"'
Publikováno v:
Energies, Vol 14, Iss 19, p 6151 (2021)
In this article, we consider a time evolution equation for solute transport, coupled with a pressure equation in space dimension 2. For the numerical discretization, we combine the generalized finite volume method SUSHI on adaptive meshes with a time
Externí odkaz:
https://doaj.org/article/6ff2c09f6d6c4e3ab831050cacfec5f1
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Energies, Vol 14, Iss 6151, p 6151 (2021)
Energies
Volume 14
Issue 19
Energies
Volume 14
Issue 19
In this article, we consider a time evolution equation for solute transport, coupled with a pressure equation in space dimension 2. For the numerical discretization, we combine the generalized finite volume method SUSHI on adaptive meshes with a time
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::648ce117a8cda56a3d9477fc60c83801
https://hal.archives-ouvertes.fr/hal-03087936
https://hal.archives-ouvertes.fr/hal-03087936
Publikováno v:
Vietnam Journal of Mathematics
Vietnam Journal of Mathematics, Springer, 2015, ⟨10.1007/s10013-015-0170-y⟩
Vietnam Journal of Mathematics, 2015, ⟨10.1007/s10013-015-0170-y⟩
Vietnam Journal of Mathematics, Springer, 2015, ⟨10.1007/s10013-015-0170-y⟩
Vietnam Journal of Mathematics, 2015, ⟨10.1007/s10013-015-0170-y⟩
International audience; In this article, we apply the generalized finite volume method SUSHI to the dis-cretization of Richards equation, an elliptic-parabolic equation modeling groundwater flow, where the diffusion term can be anisotropic and hetero
Publikováno v:
ESAIM: Proceedings and Surveys, Vol 38, Pp 376-386 (2013)
In this paper, we apply a semi-implicit finite volume method for the numerical simulation of density driven flows in porous media; this amounts to solving a nonlinear convection-diffusion parabolic equation for the concentration coupled with an ellip
Publikováno v:
Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems ISBN: 9783319055909
Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems
The International Symposium of Finite Volumes for Complex Applications VII
The International Symposium of Finite Volumes for Complex Applications VII, Jun 2014, Berlin, Germany. ⟨10.1007/978-3-319-05591-6_53⟩
Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems
The International Symposium of Finite Volumes for Complex Applications VII
The International Symposium of Finite Volumes for Complex Applications VII, Jun 2014, Berlin, Germany. ⟨10.1007/978-3-319-05591-6_53⟩
International audience; We propose a finite volume method on general meshes for the discretiza-tion of Richards equation, an elliptic-parabolic equation modeling groundwater flow. The diffusion term, which can be anisotropic and heterogeneous, is dis
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1973b2ce6a01a1456c49210584c05e7f
https://doi.org/10.1007/978-3-319-05591-6_53
https://doi.org/10.1007/978-3-319-05591-6_53