Zobrazeno 1 - 10
of 62
pro vyhledávání: '"Huseyin Nesir"'
Autor:
Huseyin Nesir
Publikováno v:
Demonstratio Mathematica, Vol 56, Iss 1, Pp 147-152 (2023)
In this article, an approximation of the image of the closed ball of the space Lp{L}_{p} (p>1p\gt 1) centered at the origin with radius rr under Hilbert-Schmidt integral operator F(⋅):Lp→LqF\left(\cdot ):{L}_{p}\to {L}_{q}, 1p+1q=1\frac{1}{p}+\fr
Externí odkaz:
https://doaj.org/article/cc6f789e64444f7d85e525e541f224c6
In this paper approximations of the set of trajectories and integral funnel of the control system described by nonlinear ordinary differential equation with integral constraint on the control functions are considered. The set of admissible control fu
Externí odkaz:
http://arxiv.org/abs/2202.10561
In this paper an approximation of the set of multivariable and $L_2$ integrable trajectories of the control system described by Urysohn type integral equation is considered. It is assumed that the system is affine with respect to the control vector.
Externí odkaz:
http://arxiv.org/abs/2110.06994
Approximations of the image and integral funnel of the closed ball of the space $L_p,$ $p>1,$ under Urysohn type integral operator are considered. The closed ball of the space $L_p,$ $p>1,$ is replaced by the set consisting of a finite number of piec
Externí odkaz:
http://arxiv.org/abs/2107.08424
The control system described by Urysohn type integral equation is considered where the system is nonlinear with respect to the phase vector and is affine with respect to the control vector. The control functions are chosen from the closed ball of the
Externí odkaz:
http://arxiv.org/abs/2105.05967
Autor:
Huseyin, Nesir
In this paper an approximation of the image of the closed ball of the space $L_p$ $(p>1)$ centered at the origin with radius $r$ under Hilbert-Schmidt integral operator $F(\cdot):L_p\rightarrow L_q$ $\displaystyle \left(\frac{1}{p}+\frac{1}{q}=1\righ
Externí odkaz:
http://arxiv.org/abs/2104.14218
Publikováno v:
Mathematical Notes, 2022, 111(1), 58-70
In this paper the continuity of the set valued map $p\rightarrow B_{\Omega,\mathcal{X},p}(r),$ $p\in (1,+\infty),$ is proved where $B_{\Omega,\mathcal{X},p}(r)$ is the closed ball of the space $L_{p}\left(\Omega,\Sigma,\mu; \mathcal{X}\right)$ center
Externí odkaz:
http://arxiv.org/abs/2104.12014
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Evolution Equations & Control Theory; Aug2024, Vol. 13 Issue 4, p1-17, 17p