Zobrazeno 1 - 10
of 96
pro vyhledávání: '"Hupkes, Hermen Jan"'
We prove the existence of small-amplitude periodic traveling waves in dimer Fermi-Pasta-Ulam-Tsingou (FPUT) lattices without assumptions of physical symmetry. Such lattices are infinite, one-dimensional chains of coupled particles in which the partic
Externí odkaz:
http://arxiv.org/abs/2412.17733
Autor:
Garénaux, Louis, Hupkes, Hermen Jan
We study the existence of traveling wave solutions for a numerical counterpart of the KPP equation. We obtain the existence of monostable fronts for all super-critical speeds in the regime where the spatial step size is small. The key strategy is to
Externí odkaz:
http://arxiv.org/abs/2412.16580
We consider reaction-diffusion systems with multiplicative noise on a spatial domain of dimension two or higher. The noise process is white in time, coloured in space, and invariant under translations. In the deterministic setting, multidimensional s
Externí odkaz:
http://arxiv.org/abs/2406.04232
We study the stability and dynamics of solitons in the Korteweg de-Vries (KdV) equation with small multiplicative forcing. Forcing breaks the conservative structure of the KdV equation, leading to substantial changes in energy over long time. We show
Externí odkaz:
http://arxiv.org/abs/2404.01755
Autor:
Hupkes, Hermen Jan, Jukic, Mia
In this work we study travelling wave solutions to bistable reaction diffusion equations on bi-infinite $k$-ary trees in the continuum regime where the diffusion parameter is large. Adapting the spectral convergence method developed by Bates and his
Externí odkaz:
http://arxiv.org/abs/2401.12899
This paper studies the behavior of solitons in the Korteweg-de Vries equation under the influence of multiplicative noise. We introduce stochastic processes that track the amplitude and position of solitons based on a rescaled frame formulation and s
Externí odkaz:
http://arxiv.org/abs/2307.15499
Autor:
Faver, Timothy E., Hupkes, Hermen Jan
We study traveling waves in mass and spring dimer Fermi-Pasta-Ulam-Tsingou (FPUT) lattices in the long wave limit. Such lattices are known to possess nanopteron traveling waves in relative displacement coordinates. These nanopteron profiles consist o
Externí odkaz:
http://arxiv.org/abs/2207.05121
We study traveling wave solutions to bistable differential equations on infinite $k$-ary trees. These graphs generalize the notion of classical square infinite lattices and our results complement those for bistable lattice equations on $\mathbb{Z}$.
Externí odkaz:
http://arxiv.org/abs/2206.05029
We analyze an 'up-the-gradient' model for the formation of transport channels of the phytohormone auxin, through auxin-mediated polarization of the PIN1 auxin transporter. We show that this model admits a family of travelling wave solutions that is p
Externí odkaz:
http://arxiv.org/abs/2203.02031
Autor:
Ganguly, Poulami Somanya, Lucka, Felix, Kohr, Holger, Franken, Erik, Hupkes, Hermen Jan, Batenburg, K Joost
Tilt-series alignment is crucial to obtaining high-resolution reconstructions in cryo-electron tomography. Beam-induced local deformation of the sample is hard to estimate from the low-contrast sample alone, and often requires fiducial gold bead mark
Externí odkaz:
http://arxiv.org/abs/2201.08706