Zobrazeno 1 - 10
of 157
pro vyhledávání: '"Hung, Nguyen Ngoc"'
Let $p$ be a prime and $G$ a finite group. A complex character of $G$ is called almost $p$-rational if its values belong to a cyclotomic field $\mathbb{Q}(e^{2\pi i/n})$ for some $n\in \mathbb{Z}^+$ prime to $p$ or precisely divisible by $p$. We prov
Externí odkaz:
http://arxiv.org/abs/2104.02994
Publikováno v:
Alg. Number Th. 17 (2023) 1127-1151
We prove that the number of irreducible ordinary characters in the principal $p$-block of a finite group $G$ of order divisible by $p$ is always at least $2\sqrt{p-1}$. This confirms a conjecture of H\'{e}thelyi and K\"{u}lshammer for principal block
Externí odkaz:
http://arxiv.org/abs/2102.09077
Let k(B_0) and l(B_0) respectively denote the number of ordinary and p-Brauer irreducible characters in the principal block B_0 of a finite group G. We prove that, if k(B_0)-l(B_0)=1, then l(B_0)\geq p-1 or else p=11 and l(B_0)=9. This follows from a
Externí odkaz:
http://arxiv.org/abs/2102.04443
Autor:
Hung, Nguyen Ngoc, Maroti, Attila
Let $G$ be a finite group of order divisible by a prime $p$. The number of $p$-regular and $p'$-regular conjugacy classes of $G$ is at least $2\sqrt{p-1}$. Also, the number of $p$-rational and $p'$-rational irreducible characters of $G$ is at least $
Externí odkaz:
http://arxiv.org/abs/2004.05194
Let $G$ be a finite group and $P$ a Sylow $2$-subgroup of $G$. We obtain both asymptotic and explicit bounds for the number of odd-degree irreducible complex representations of $G$ in terms of the size of the abelianization of $P$. To do so, we, on o
Externí odkaz:
http://arxiv.org/abs/2004.03091
We prove that there exists an integer-valued function f on positive integers such that if a finite group G has at most k real-valued irreducible characters, then |G/Sol(G)| is at most f(k), where Sol(G) denotes the largest solvable normal subgroup of
Externí odkaz:
http://arxiv.org/abs/1905.10827
Autor:
Hung, Nguyen Ngoc, Yang, Yong
Let $H$ be an abelian subgroup of a finite group $G$ and $\pi$ the set of prime divisors of $|H|$. We prove that $|H O_{\pi}(G)/ O_{\pi}(G)|$ is bounded above by the largest character degree of $G$. A similar result is obtained when $H$ is nilpotent.
Externí odkaz:
http://arxiv.org/abs/1905.10512
Autor:
Hung, Nguyen Ngoc, Tiep, Pham Huu
The classical It\^{o}-Michler theorem states that the degree of every ordinary irreducible character of a finite group $G$ is coprime to a prime $p$ if and only if the Sylow $p$-subgroups of $G$ are abelian and normal. In an earlier paper, we used th
Externí odkaz:
http://arxiv.org/abs/1904.03574
Publikováno v:
In Journal of Algebra 15 May 2023 622:197-219
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.