Zobrazeno 1 - 10
of 94
pro vyhledávání: '"Humio Ichimura"'
Publikováno v:
Journal of the Mathematical Society of Japan. 74(3):945-972
Let p be an odd prime number and let 2e+1 be the highest power of 2 dividing p − 1. For 0 ≤ n ≤ e, let kn be the real cyclic field of conductor p and degree 2n. For a certain imaginary quadratic field L0, we put Ln = L0kn. For 0 ≤ n ≤ e −
Publikováno v:
Tokyo Journal of Mathematics. 44(1):157-173
Let $p=2^{e+1}q+1$ be an odd prime number with $2 \nmid q$. Let $K$ be the imaginary cyclic field of conductor $p$ and degree $2^{e+1}$. We denote by $\mathcal{F}$ the imaginary quadratic subextension of the imaginary $(2,\,2)$-extension $K(\sqrt{2})
Autor:
Humio Ichimura
Publikováno v:
Acta Arithmetica. 199:145-152
Autor:
Humio Ichimura, Shoichi Fujima
Publikováno v:
Mathematical Journal of Ibaraki University. 53:1-16
Autor:
Humio Ichimura
Publikováno v:
Kyushu Journal of Mathematics. 73:115-121
Autor:
Humio, Ichimura
Publikováno v:
Mathematical Journal of Ibaraki University. 51:39-48
application/pdf
論文(Article)
論文(Article)
Autor:
Shoichi Fujima, Humio Ichimura
Publikováno v:
Mathematical Journal of Ibaraki University. 50:15-26
Autor:
Humio Ichimura
Publikováno v:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 88:51-66
Let p be an odd prime number and $$\ell $$ an odd prime number dividing $$p-1$$ . We denote by $$F=F_{p,\ell }$$ the real abelian field of conductor p and degree $$\ell $$ , and by $$h_F$$ the class number of F. For a prime number $$r \ne p,\,\ell $$
Autor:
Humio Ichimura
Publikováno v:
Proc. Japan Acad. Ser. A Math. Sci. 95, no. 7 (2019), 80-82
We correct and change Proposition 1 and the proof of Proposition 2 of the previous paper [7].
Autor:
Humio Ichimura
Publikováno v:
Kodai Math. J. 42, no. 1 (2019), 99-110
For a fixed integer $n \geq 1$, let $p=2n\ell+1$ be a prime number with an odd prime number $\ell$, and let $F=F_{p,\ell}$ be the real abelian field of conductor $p$ and degree $\ell$. We show that the class number $h_F$ of $F$ is odd when 2 remains