Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Humbird, K. D."'
Autor:
Humbird, K. D., Peterson, J. L.
Transfer learning is a promising approach to creating predictive models that incorporate simulation and experimental data into a common framework. In this technique, a neural network is first trained on a large database of simulations, then partially
Externí odkaz:
http://arxiv.org/abs/2205.13519
Autor:
Ross, J. S., Ralph, J. E., Zylstra, A. B., Kritcher, A. L., Robey, H. F., Young, C. V., Hurricane, O. A., Callahan, D. A., Baker, K. L., Casey, D. T., Doeppner, T., Divol, L., Hohenberger, M., Pape, S. Le, Pak, A., Patel, P. K., Tommasini, R., Ali, S. J., Amendt, P. A., Atherton, L. J., Bachmann, B., Bailey, D., Benedetti, L. R., Hopkins, L. Berzak, Betti, R., Bhandarkar, S. D., Bionta, R. M., Birge, N. W., Bond, E. J., Bradley, D. K., Braun, T., Briggs, T. M., Bruhn, M. W., Celliers, P. M., Chang, B., Chapman, T., Chen, H., Choate, C., Christopherson, A. R., Clark, D. S., Crippen, J. W., Dewald, E. L., Dittrich, T. R., Edwards, M. J., Farmer, W. A., Field, J. E., Fittinghoff, D., Frenje, J., Gaffney, J., Johnson, M. Gatu, Glenzer, S. H., Grim, G. P., Haan, S., Hahn, K. D., Hall, G. N., Hammel, B. A., Harte, J., Hartouni, E., Heebner, J. E., Hernandez, V. J., Herrmann, H., Herrmann, M. C., Hinkel, D. E., Ho, D. D., Holder, J. P., Hsing, W. W., Huang, H., Humbird, K. D., Izumi, N., Jarrott, L. C., Jeet, J., Jones, O., Kerbel, G. D., Kerr, S. M., Khan, S. F., Kilkenny, J., Kim, Y., Kleinrath, H. Geppert, Kleinrath, V. Geppert, Kong, C., Koning, J. M., Kroll, J. J., Landen, O. L., Langer, S., Larson, D., Lemos, N. C., Lindl, J. D., Ma, T., MacDonald, M. J., MacGowan, B. J., Mackinnon, A. J., MacLaren, S. A., MacPhee, A. G., Marinak, M. M., Mariscal, D. A., Marley, E. V., Masse, L., Meaney, K., Meezan, N. B., Michel, P. A., Millot, M., Milovich, J. L., Moody, J. D., Moore, A. S., Morton, J. W., Murphy, T., Newman, K., Di Nicola, J. -M. G., Nikroo, A., Nora, R., Patel, M. V., Pelz, L. J., Peterson, J. L., Ping, Y., Pollock, B. B., Ratledge, M., Rice, N. G., Rinderknecht, H., Rosen, M., Rubery, M. S., Salmonson, J. D., Sater, J., Schiaffino, S., Schlossberg, D. J., Schneider, M. B., Schroeder, C. R., Scott, H. A., Sepke, S. M., Sequoia, K., Sherlock, M. W., Shin, S., Smalyuk, V. A., Spears, B. K., Springer, P. T., Stadermann, M., Stoupin, S., Strozzi, D. J., Suter, L. J., Thomas, C. A., Town, R. P. J., Tubman, E. R., Volegov, P. L., Weber, C. R., Widmann, K., Wild, C., Wilde, C. H., Van Wonterghem, B. M., Woods, D. T., Woodworth, B. N., Yamaguchi, M., Yang, S. T., Zimmerman, G. B.
An experimental program is currently underway at the National Ignition Facility (NIF) to compress deuterium and tritium (DT) fuel to densities and temperatures sufficient to achieve fusion and energy gain. The primary approach being investigated is i
Externí odkaz:
http://arxiv.org/abs/2111.04640
The design space for inertial confinement fusion (ICF) experiments is vast and experiments are extremely expensive. Researchers rely heavily on computer simulations to explore the design space in search of high-performing implosions. However, ICF mul
Externí odkaz:
http://arxiv.org/abs/2103.10590
Inertial confinement fusion (ICF) experiments are designed using computer simulations that are approximations of reality, and therefore must be calibrated to accurately predict experimental observations. In this work, we propose a novel nonlinear tec
Externí odkaz:
http://arxiv.org/abs/1812.06055
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this work, sequence-to-sequence (seq2seq) models, originally developed for language translation, are used to predict the temporal evolution of complex, multi-physics computer simulations. The predictive performance of seq2seq models is compared to
Externí odkaz:
http://arxiv.org/abs/1811.05852
In this work a novel, automated process for constructing and initializing deep feed-forward neural networks based on decision trees is presented. The proposed algorithm maps a collection of decision trees trained on the data into a collection of init
Externí odkaz:
http://arxiv.org/abs/1707.00784
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.