Zobrazeno 1 - 10
of 86
pro vyhledávání: '"Hull, Thomas P."'
We introduce VISTA, a clustering approach for multivariate and irregularly sampled time series based on a parametric state space mixture model. VISTA is specifically designed for the unsupervised identification of groups in datasets originating from
Externí odkaz:
http://arxiv.org/abs/2410.21527
Autor:
Nguyen, Vivian, Jung, Sang Min, Lee, Lillian, Hull, Thomas D., Danescu-Niculescu-Mizil, Cristian
Mental-health therapy involves a complex conversation flow in which patients and therapists continuously negotiate what should be talked about next. For example, therapists might try to shift the conversation's direction to keep the therapeutic proce
Externí odkaz:
http://arxiv.org/abs/2410.07147
Non-periodic folding of periodic crease patterns paves the way to novel nonlinear phenomena that cannot be feasible through periodic folding. This paper focuses on the non-periodic folding of recursive crease patterns generalized from Spidron. Althou
Externí odkaz:
http://arxiv.org/abs/2403.09278
Prior work has shown that analyzing the use of first-person singular pronouns can provide insight into individuals' mental status, especially depression symptom severity. These findings were generated by counting frequencies of first-person singular
Externí odkaz:
http://arxiv.org/abs/2310.03232
Autor:
Hull, Thomas C., Zakharevich, Inna
Flat origami refers to the folding of flat, zero-curvature paper such that the finished object lies in a plane. Mathematically, flat origami consists of a continuous, piecewise isometric map $f:P\subseteq\mathbb{R}^2\to\mathbb{R}^2$ along with a laye
Externí odkaz:
http://arxiv.org/abs/2309.07932
Publikováno v:
Physical Review E, Vol. 106, 2022, 055001
We derive new algebraic equations for the folding angle relationships in completely general degree-four rigid-foldable origami vertices, including both Euclidean (developable) and non-Euclidean cases. These equations in turn lead to novel, elegant eq
Externí odkaz:
http://arxiv.org/abs/2206.12691
Publikováno v:
Journal of Graph Algorithms and Applications, Vol. 26, No. 4, 2020
Flat origami studies straight line, planar graphs $C=(V,E)$ drawn on a region $R\subset\mathbb{R}^2$ that can act as crease patterns to map, or fold, $R$ into $\mathbb{R}^2$ in a way that is continuous and a piecewise isometry exactly on the faces of
Externí odkaz:
http://arxiv.org/abs/2203.14173
Rigid origami, with applications ranging from nano-robots to unfolding solar sails in space, describes when a material is folded along straight crease line segments while keeping the regions between the creases planar. Prior work has found explicit e
Externí odkaz:
http://arxiv.org/abs/2108.12483
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Akitaya, Hugo A., Dujmovi, Vida, Eppstein, David, Hull, Thomas C., Jain, Kshitij, Lubiw, Anna
Publikováno v:
Journal of Computational Geometry, Vol. 11, No. 1, 2020, pages 397-417
Given a flat-foldable origami crease pattern $G=(V,E)$ (a straight-line drawing of a planar graph on a region of the plane) with a mountain-valley (MV) assignment $\mu:E\to\{-1,1\}$ indicating which creases in $E$ bend convexly (mountain) or concavel
Externí odkaz:
http://arxiv.org/abs/1910.05667