Zobrazeno 1 - 10
of 86
pro vyhledávání: '"Huisken, Gerhard"'
Autor:
Huisken, Gerhard, Koerber, Thomas
Let $(M,g)$ be a complete, connected, non-compact Riemannian three-manifold with non-negative Ricci curvature satisfying $Ric\geq\varepsilon\,\operatorname{tr}(Ric)\,g$ for some $\varepsilon>0$. In this note, we give a new proof based on inverse mean
Externí odkaz:
http://arxiv.org/abs/2305.04702
Autor:
Huisken, Gerhard, Wolff, Markus
We construct weak solutions for the evolution of hypersurfaces along their inverse space-time mean curvature in asymptotically flat maximal initial data sets. As the speed of the new flow is given by a space-time invariant, it can detect both future-
Externí odkaz:
http://arxiv.org/abs/2208.05709
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We study the evolution of strictly mean-convex entire graphs over $R^n$ by Inverse Mean Curvature flow. First we establish the global existence of starshaped entire graphs with superlinear growth at infinity. The main result in this work concerns the
Externí odkaz:
http://arxiv.org/abs/1709.06665
Autor:
Dierkes, Ulrich, Huisken, Gerhard
Publikováno v:
Mathematische Annalen; Aug2024, Vol. 389 Issue 4, p3841-3863, 23p
Autor:
Arnlind, Joakim, Huisken, Gerhard
We show that the pseudo-Riemannian geometry of submanifolds can be formulated in terms of higher order multi-linear maps. In particular, we obtain a Poisson bracket formulation of almost (para-)K\"ahler geometry.
Externí odkaz:
http://arxiv.org/abs/1312.5454
Autor:
Arnlind, Joakim, Huisken, Gerhard
We prove that the Riemannian geometry of almost K\"ahler manifolds can be expressed in terms of the Poisson algebra of smooth functions on the manifold. Subsequently, K\"ahler-Poisson algebras are introduced, and it is shown that a corresponding pure
Externí odkaz:
http://arxiv.org/abs/1103.5862
We prove that many aspects of the differential geometry of embedded Riemannian manifolds can be formulated in terms of multi linear algebraic structures on the space of smooth functions. In particular, we find algebraic expressions for Weingarten's f
Externí odkaz:
http://arxiv.org/abs/1009.4779
We prove that many aspects of the differential geometry of embedded Riemannian manifolds can be formulated in terms of a multi-linear algebraic structure on the space of smooth functions. In particular, we find algebraic expressions for Weingarten's
Externí odkaz:
http://arxiv.org/abs/1003.5981
For matrix analogues of embedded surfaces we define discrete curvatures and Euler characteristics, and a non-commutative Gauss--Bonnet theorem is shown to follow. We derive simple expressions for the discrete Gauss curvature in terms of matrices repr
Externí odkaz:
http://arxiv.org/abs/1001.2223