Zobrazeno 1 - 10
of 96
pro vyhledávání: '"Hui, Kin Ming"'
Autor:
Hui, Kin Ming
Let $n\ge 3$, $00$, $\eta>0$, $\beta>\frac{m\rho_1}{n-2-nm}$, $\alpha=\alpha_m=\frac{2\beta+\rho_1}{1-m}$, $\beta_0>0$ and $\alpha_0=2\beta_0+1$. We use fixed point argument to give a new proof for the existence and uniquen
Externí odkaz:
http://arxiv.org/abs/2308.10221
Autor:
Hui, Kin Ming, Chou, Kai-Seng
It is shown every nonnegative solution of the heat equation in a bounded cylindrical domain has an integral representation in terms of a trace triple consisting of a bottom trace, a corner trace and a lateral trace on its parabolic boundary. Converse
Externí odkaz:
http://arxiv.org/abs/2210.10954
Autor:
Hui, Kin Ming
By using fixed point argument we give a proof for the existence of singular rotationally symmetric steady and expanding gradient Ricci solitons in higher dimensions with metric $g=\frac{da^2}{h(a^2)}+a^2g_{S^n}$ for some function $h$ where $g_{S^n}$
Externí odkaz:
http://arxiv.org/abs/2107.13685
Autor:
Hui, Kin Ming, Chou, Kai-Seng
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 April 2024 532(2)
Autor:
Hui, Kin Ming, Kim, Soojung
Let $n\geq 3$, $0< m<\frac{n-2}{n}$ and $T>0$. We construct positive solutions to the fast diffusion equation $u_t=\Delta u^m$ in $\mathbb{R}^n\times(0,T)$, which vanish at time $T$. By introducing a scaling parameter $\beta$ inspired by \cite{DKS},
Externí odkaz:
http://arxiv.org/abs/1811.04410
Existence and large time behaviour of finite points blow-up solutions of the fast diffusion equation
Autor:
Hui, Kin Ming, Kim, Sunghoon
Let $\Omega\subset\R^n$ be a smooth bounded domain and let $a_1,a_2,\dots,a_{i_0}\in\Omega$, $\widehat{\Omega}=\Omega\setminus\{a_1,a_2,\dots,a_{i_0}\}$ and $\widehat{R^n}=\R^n\setminus\{a_1,a_2,\dots,a_{i_0}\}$. We prove the existence of solution $u
Externí odkaz:
http://arxiv.org/abs/1712.05515
Autor:
Hui, Kin Ming
Publikováno v:
Canadian Mathematical Bulletin; Sep2024, Vol. 67 Issue 3, p842-859, 18p
Autor:
Hui, Kin Ming, Kim, Sunghoon
Let $n\geq 3$, $0\le m<\frac{n-2}{n}$, $\rho_1>0$, $\beta>\beta_0^{(m)}=\frac{m\rho_1}{n-2-nm}$, $\alpha_m=\frac{2\beta+\rho_1}{1-m}$ and $\alpha=2\beta+\rho_1$. For any $\lambda>0$, we prove the uniqueness of radially symmetric solution $v^{(m)}$ of
Externí odkaz:
http://arxiv.org/abs/1606.03793