Zobrazeno 1 - 10
of 60
pro vyhledávání: '"Hui, Chun Yin"'
Autor:
Dai, Boyi, Hui, Chun Yin
Let $\{\rho_{\ell}:\mathrm{Gal}_K\to\mathrm{GL}_n(\mathbb{Q}_{\ell})\}_{\ell}$ be a semisimple compatible system of $\ell$-adic representations of a number field $K$ that is arising from geometry. Let $\textbf{G}_{\ell}\subset\mathrm{GL}_{n,\mathbb{Q
Externí odkaz:
http://arxiv.org/abs/2407.20907
Autor:
Hui, Chun-Yin, Lee, Wonwoong
Let $K$ be a totally real field and $\{\rho_{\pi,\lambda}:\mathrm{Gal}_K\to\mathrm{GL}_n(\overline E_\lambda)\}_\lambda$ the strictly compatible system of $K$ defined over $E$ attached to a regular algebraic polarized cuspidal automorphic representat
Externí odkaz:
http://arxiv.org/abs/2407.12566
Autor:
Böckle, Gebhard, Hui, Chun-Yin
Let $\rho_\ell$ be a semisimple $\ell$-adic representation of a number field $K$ that is unramified almost everywhere. We introduce a new notion called weak abelian direct summands of $\rho_\ell$ and completely characterize them, for example, if the
Externí odkaz:
http://arxiv.org/abs/2404.08954
Autor:
Hui, Chun Yin
Let $F$ be a totally real field and $n\leq 4$ a natural number. We study the monodromy groups of any $n$-dimensional strictly compatible system $\{\rho_\lambda\}_\lambda$ of $\lambda$-adic representations of $F$ with distinct Hodge-Tate numbers such
Externí odkaz:
http://arxiv.org/abs/2208.04004
Autor:
Hui, Chun Yin
Let $X$ be a smooth, separated, geometrically connected scheme defined over a number field $K$ and $\{\rho_\lambda\}_\lambda$ a system of n-dimensional semisimple $\lambda$-adic representations of the \'etale fundamental group of $X$ such that for ea
Externí odkaz:
http://arxiv.org/abs/2208.04002
Autor:
Hui, Chun Yin, Kishore, Krishna
We establish an explicit upper bound B(p,l,m), depending on p,l,m, on the number of conjugacy classes of order p^2 torsion elements u of type of the Nottingham group defined over the prime field of characteristic p >0. In the cases where l < p,
Externí odkaz:
http://arxiv.org/abs/1810.11304
Autor:
Hui, Chun Yin
Let $E$ be a number field and $X$ a smooth geometrically connected variety defined over a characteristic $p$ finite field. Given an $n$-dimensional pure $E$-compatible system of semisimple $\lambda$-adic representations of the \'etale fundamental gro
Externí odkaz:
http://arxiv.org/abs/1805.08383
Autor:
Hui, Chun Yin, Larsen, Michael
Publikováno v:
Duke Math. J. 169, no. 6 (2020), 1163-1207
Let $\{\rho_\ell\}_\ell$ be the system of $\ell$-adic representations arising from the $i$th $\ell$-adic cohomology of a complete smooth variety $X$ defined over a number field $K$. Let $\Gamma_\ell$ and $\mathbf{G}_\ell$ be respectively the image an
Externí odkaz:
http://arxiv.org/abs/1707.07366
Let $X$ be a connected scheme, smooth and separated over an algebraically closed field $k$ of characteristic $p\geq 0$, let $f:Y\rightarrow X$ be a smooth proper morphism and $x$ a geometric point on $X$. We prove that the tensor invariants of bounde
Externí odkaz:
http://arxiv.org/abs/1702.07017
Autor:
Hui, Chun Yin
Let K be a number field and {V_l} be a rational strictly compatible system of semisimple Galois representations of K arising from geometry. Let G_l and V_l^ab be respectively the algebraic monodromy group and the maximal abelian subrepresentation of
Externí odkaz:
http://arxiv.org/abs/1603.01283