Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Hugo Beirão da Veiga"'
Autor:
Hugo Beirão Da Veiga, Jiaqi Yang
Publikováno v:
Chinese Annals of Mathematics, Series B. 43:51-58
Autor:
Francesca Crispo, Hugo Beirão da Veiga
Publikováno v:
Advances in Nonlinear Analysis. 12
We present a survey concerning the convergence, as the viscosity goes to zero, of the solutions to the three-dimensional evolutionary Navier-Stokes equations to solutions of the Euler equations. After considering the Cauchy problem, particular attent
Autor:
Hugo Beirão da Veiga, Jiaqi Yang
Publikováno v:
Science China Mathematics. 65:2099-2122
The main purpose of this paper is to extend the result obtained by Beirao da Veiga (2000) from the whole-space case to slip boundary cases. Denote by u two components of the velocity u. To fix ideas set ū = (u1,u2, 0) (the half-space) or $${\boldsym
Autor:
Jiaqi Yang, Hugo Beirão da Veiga
Publikováno v:
Nonlinearity. 34:562-577
Autor:
Hugo Beirão da Veiga, Jiaqi Yang
Publikováno v:
Journal of Mathematical Physics. 64:011515
We study the motion of a viscous incompressible fluid in an n + 1-dimensional infinite pipe Λ with an L-periodic shape in the z = x n+1 direction. We denote by Σ z the cross-section of the pipe at the level z and by v z the ( n + 1)th component of
Autor:
Hugo Beirão da Veiga
Publikováno v:
Discrete & Continuous Dynamical Systems - S. 12:203-213
We consider solutions \begin{document}$u$\end{document} to the Navier-Stokes equations in the whole space. We set \begin{document}$\omega = \nabla × u, $\end{document} the vorticity of \begin{document}$u$\end{document} . Our study concerns relations
This proceedings volume gathers selected, carefully reviewed works presented at the Portugal-Italy Conference on Nonlinear Differential Equations and Applications (PICNDEA22), held on July 4-6, 2022, at the University of Évora, Portugal.The main foc
Autor:
Hugo Beirão da Veiga, Jiaqi Yang
Publikováno v:
Journal of Mathematical Fluid Mechanics. 22
In this note we extend a 2018 result of Bardos and Titi (Arch Ration Mech Anal 228(1):197–207, 2018) to a new class of functional spaces $$C^{0,\alpha }_{\lambda }(\bar{\Omega })$$ . It is shown that weak solutions $$\,u\,$$ satisfy the energy equa
Autor:
Hugo Beirão da Veiga, Jiaqi Yang
In this paper we derive regular criteria in Lorentz spaces for Leray-Hopf weak solutions $v$ of the three-dimensional Navier-Stokes equations based on the formal equivalence relation $\pi\cong|v|^2$, where $\pi$ denotes the fluid pressure and $v$ the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0bd597ceb6c9c75190e4590cd567e1e0
Publikováno v:
Mathematische Annalen. 374:1559-1596
This work concerns the sufficient condition for the regularity of solutions to the evolution Navier–Stokes equations known in the literature as Prodi–Serrin condition. H.-O. Bae and H. J. Choe proved in 1997 that, in the whole space $$\mathbb {R}