Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Hubert Eichner"'
Publikováno v:
PLoS ONE, Vol 12, Iss 12, p e0189019 (2017)
Optical illusions provide powerful tools for mapping the algorithms and circuits that underlie visual processing, revealing structure through atypical function. Of particular note in the study of motion detection has been the reverse-phi illusion. Wh
Externí odkaz:
https://doaj.org/article/ee347c9218964deb8c8f179dc969285f
Autor:
Hubert Eichner, Alexander Borst
Publikováno v:
PLoS ONE, Vol 6, Iss 10, p e27013 (2011)
Computational neuroscientists frequently encounter the challenge of parameter fitting--exploring a usually high dimensional variable space to find a parameter set that reproduces an experimental data set. One common approach is using automated search
Externí odkaz:
https://doaj.org/article/4a5d342d5c214a1ab1be08b8f4f86cfc
Publikováno v:
PLoS Computational Biology, Vol 6, Iss 7, p e1000860 (2010)
To comprehend the principles underlying sensory information processing, it is important to understand how the nervous system deals with various sources of perturbation. Here, we analyze how the representation of motion information in the fly's nervou
Externí odkaz:
https://doaj.org/article/3dd117b317c9401a95c228e953339b97
Publikováno v:
Frontiers in Neuroinformatics, Vol 3 (2009)
Neuroscience is witnessing increasing knowledge about the anatomy and electrophysiological properties of neurons and their connectivity, leading to an ever increasing computational complexity of neural simulations. At the same time, a rather radical
Externí odkaz:
https://doaj.org/article/34d8916d0f354e6a9534f7b0f409504d
Autor:
Lie He, Sebastian U. Stich, Mariana Raykova, Phillip B. Gibbons, Mehryar Mohri, David Evans, Badih Ghazi, Felix X. Yu, Sen Zhao, Jianyu Wang, Zheng Xu, Weikang Song, Prateek Mittal, Ramesh Raskar, Zachary Garrett, Farinaz Koushanfar, H. Brendan McMahan, Ayfer Ozgur, Mikhail Khodak, Rafael G. L. D'Oliveira, Jakub Konecní, Aurélien Bellet, Arjun Nitin Bhagoji, Hubert Eichner, Han Yu, Adrià Gascón, Ananda Theertha Suresh, Sanmi Koyejo, Praneeth Vepakomma, Josh Gardner, Chaoyang He, Florian Tramèr, Tancrède Lepoint, Salim El Rouayheb, Peter Kairouz, Li Xiong, Kallista Bonawitz, Rasmus Pagh, Tara Javidi, Mehdi Bennis, Dawn Song, Martin Jaggi, Zhouyuan Huo, Hang Qi, Gauri Joshi, Qiang Yang, Richard Nock, Yang Liu, Brendan Avent, Justin Hsu, Rachel Cummings, Graham Cormode, Marco Gruteser, Aleksandra Korolova, Ziteng Sun, Zaid Harchaoui, Ben Hutchinson, Zachary Charles, Daniel Ramage
Publikováno v:
Foundations and Trends in Machine Learning
Foundations and Trends in Machine Learning, 2021, 14 (1-2), pp.1-210
Foundations and Trends in Machine Learning, Now Publishers, 2021, 14 (1-2), pp.1-210
Foundations and Trends in Machine Learning, 2021, 14 (1-2), pp.1-210
Foundations and Trends in Machine Learning, Now Publishers, 2021, 14 (1-2), pp.1-210
Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0b1ccc10027ba1ce68ce0210510e8bdc
https://inria.hal.science/hal-02406503v2/document
https://inria.hal.science/hal-02406503v2/document
Autor:
Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawit, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konecný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, Sen Zhao
The term Federated Learning was coined as recently as 2016 to describe a machine learning setting where multiple entities collaborate in solving a machine learning problem, under the coordination of a central server or service provider. Each client's
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Neuron. 70:1155-1164
SummaryRecent experiments have shown that motion detection in Drosophila starts with splitting the visual input into two parallel channels encoding brightness increments (ON) or decrements (OFF). This suggests the existence of either two (ON-ON, OFF-
Publikováno v:
Journal of Computational Neuroscience
Neuron tree topology equations can be split into two subtrees and solved on different processors with no change in accuracy, stability, or computational effort; communication costs involve only sending and receiving two double precision values by eac
Publikováno v:
The Journal of Neuroscience
In the flyDrosophila melanogaster, photoreceptor input to motion vision is split into two parallel pathways as represented by first-order interneurons L1 and L2 (Rister et al., 2007; Joesch et al., 2010). However, how these pathways are functionally
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::01910bc2632f48069b04efe99b812ef9
https://hdl.handle.net/11858/00-001M-0000-000E-B653-A11858/00-001M-0000-000E-B644-C
https://hdl.handle.net/11858/00-001M-0000-000E-B653-A11858/00-001M-0000-000E-B644-C