Zobrazeno 1 - 10
of 57
pro vyhledávání: '"Hubert Berens"'
Autor:
Elena E. Berdysheva, Hubert Berens
Publikováno v:
Results in Mathematics. 47:17-32
Turan’s problem is to determine the greatest possible value of the integral ∫ℝ df(x)dx/ f (0) for positive definite functions f (x), x ∈ ℝd, supported in a given convex centrally symmetric body D ⊂ ℝd. In this note we consider the 2-dim
Autor:
Paul Leo Butzer, Hubert Berens
In recent years important progress has been made in the study of semi-groups of operators from the viewpoint of approximation theory. These advances have primarily been achieved by introducing the theory of intermediate spaces. The applications of th
Autor:
Harro Heuser, R. E. Fullerton, C. C. Braunschweiger, Ebbe Thue Poulsen, Jean Leray, Gregers Krabbe, Anastasios Mallios, Tosio Kato, Felix E. Browder, Takako Kōmura, Yukio Kōmura, Helmut H. Schaefer, Kosaku Yosida, Nelson Dunford, Joseph Nieto, W. A. J. Luxemburg, A. C. Zaanen, J. L. B. Cooper, R. S. Bucy, G. Maltese, Jean Dieudonné, H. G. Garnir, Heinz König, Angus E. Taylor, Max Landsberg, Thomas Riedrich, E. Michael, A. Martineau, J. L. Kelley, Vlastimil Pták, Shozo Koshi, Horst Leptin, H. Reiter, L. Waelbroeck, N. Aronszajn, P. Szeptycki, Richard Arens, Czeslaw Bessaga, Victor Klee, Hidegoro Nakano, Joseph Wloka, Ky Fan, Hubert Berens, P. L. Butzer, H. O. Cordes, Stefan Hildebrandt, Gerhard Neubauer, J. B. Diaz, F. T. Metcalf, Günter Ewald, M. A. Naǐmark, Elmar Thoma, Bernhard Gramsch
Autor:
Elena E. Berdysheva, Hubert Berens
Publikováno v:
New Perspectives on Approximation and Sampling Theory ISBN: 9783319088006
Turan’s problem for l-1 radial, positive definite functions is to determine the maximal possible value of the integral \(\int_{\mathbb{R}^{d}}f(\mathbf{x})\,d\mathbf{x}\) over the class of continuous, positive definite, l-1 radial functions \(f\) o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6523dec675a637bb0cb6330e408e3000
https://doi.org/10.1007/978-3-319-08801-3_19
https://doi.org/10.1007/978-3-319-08801-3_19
Publikováno v:
Indagationes Mathematicae. 12:41-53
On L( d), d ϵ , the l-1 Riesz (R, δ) means of the inverse Fourier transform converge almost everywhere provided δ > 0. The proof uses a new representation of the l-1 Riesz kernel derived from the l-1 Poisson kernel.
Publikováno v:
Journal of Approximation Theory. 99:44-53
Let A be a matrix in Cn×n and let UΣV* be its singular value decomposition. The authors prove that for each 1⩽k⩽n the set S(k)1={S∈Cn×n:∑1⩽j1
Autor:
Hubert Berens, Yuan Xu
Publikováno v:
Mathematical Proceedings of the Cambridge Philosophical Society. 122:149-172
Let f∈L1(ℝd), and let fˆ be its Fourier integral. We study summability of the l-1 partial integral S(1)R, d(f; x)= ∫[mid ]v[mid ][les ]Reiv·xfˆ(v)dv, x∈ℝd; note that the integral ranges over the l1-ball in ℝd centred at the origin with
Autor:
Yuan Xu, Hubert Berens
Publikováno v:
Mathematische Zeitschrift. 221:449-465
Publikováno v:
Archiv der Mathematik. 64:26-32
Autor:
M. Finzel, Hubert Berens
Publikováno v:
Mathematische Nachrichten. 175:33-46
Let A be a normal operator in ℬ(H), H a complex Hilbert space, and let ℛ A = ≷ {AX - XA:X ∈ ℬ(H)} be the commutator subspace of ℬ(H) associated with A. If B in ℬ(H) commutes with A, then B is orthogonal to ℛA with respect to the spect