Zobrazeno 1 - 10
of 118
pro vyhledávání: '"Huang Jizheng"'
Publikováno v:
Advances in Nonlinear Analysis, Vol 13, Iss 1, Pp 48 pp.-67 (2024)
In this article, we consider the bounded variation capacity (BV capacity) and characterize the Sobolev-type inequalities related to BV functions in a general framework of strictly local Dirichlet spaces with a doubling measure via the BV capacity. Un
Externí odkaz:
https://doaj.org/article/a0ce92aee20b43b4a795ea356a35dfd1
In this paper, we study the boundedness of a class of fractional integrals and derivatives associated with Laguerre polynomial expansions on Laguerre Lipschitz spaces. The consideration of such operators is motivated by the study of corresponding res
Externí odkaz:
http://arxiv.org/abs/2408.09165
Publikováno v:
Advances in Nonlinear Analysis, Vol 9, Iss 1, Pp 1291-1314 (2019)
Let
Externí odkaz:
https://doaj.org/article/0b358f275bd54b5d81d68860677719ad
For $a \ge - {( \frac{{d}}{2}- 1)^2} $ and $2\sigma= {{d - 2}}-( {{{(d - 2)}^2} + 4a})^{1/2}$, let $$\begin{cases}\mathcal{H}_{a}= - \Delta + \frac{a} {{{{ | x |}^2}}},\\ \mathcal{\widetilde{H}}_{\sigma}= 2\big( { - \Delta + \frac{{{\sigma ^2}}} {{{{
Externí odkaz:
http://arxiv.org/abs/2203.16770
Autor:
Huang Jizheng
Publikováno v:
Journal of Inequalities and Applications, Vol 2011, Iss 1, p 741095 (2011)
Abstract Let where . Then can generate a hypergroup which is called Laguerre hypergroup, and we denote this hypergroup by K. In this paper, we will consider the Littlewood-Paley -functions on K and then we use it to prove the Hölmander multipliers o
Externí odkaz:
https://doaj.org/article/fe70ece8808b4cd4bf9138b7a5805976
Let $\mathcal{H}_{\alpha}=\Delta-(\alpha-1)|x|^{\alpha}$ be an $[1,\infty)\ni\alpha$-Hermite operator for the hydrogen atom located at the origin in $\mathbb R^d$. In this paper, we are motivated by the classical case $\alpha=1$ to investigate the sp
Externí odkaz:
http://arxiv.org/abs/1908.07889
Let $(\mathbb M, d,\mu)$ be a metric measure space with upper and lower densities: $$ \begin{cases} |||\mu|||_{\beta}:=\sup_{(x,r)\in \mathbb M\times(0,\infty)} \mu(B(x,r))r^{-\beta}<\infty;\\ |||\mu|||_{\beta^{\star}}:=\inf_{(x,r)\in \mathbb M\times
Externí odkaz:
http://arxiv.org/abs/1908.07895
Publikováno v:
Discrete & Continuous Dynamical Systems - Series S; Dec2024, Vol. 17 Issue 12, p1-40, 40p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Huang, Jizheng1 (AUTHOR) hjzheng@163.com, Mo, Huixia1 (AUTHOR)
Publikováno v:
Frontiers of Mathematics. Aug2023, Vol. 18 Issue 4, p863-882. 20p.