Zobrazeno 1 - 10
of 183
pro vyhledávání: '"Huang Gary"'
Autor:
Wacker Frank, Krieg Robert, Huang Gary, Ehtiati Tina, Ouwerkerk Ronald, Shea Steven M, Kedziorek Dorota A, Xie Yibin, Fu Yingli, Bulte Jeff WM, Kraitchman Dara L
Publikováno v:
Journal of Cardiovascular Magnetic Resonance, Vol 12, Iss Suppl 1, p O14 (2010)
Externí odkaz:
https://doaj.org/article/7c09feb0b2244b8295f7256beba5e314
Publikováno v:
In Chemical Engineering Journal 15 July 2024 492
Autor:
Bulte Jeff WM, Sieber Bradley, Huang Gary, Kohl Bernard E, Stuber Matthias, Boston Raymond C, Chatterjee Paromita, Gilson Wesley D, Kedziorek Dorota A, Hofmann Lawrence V, Kraitchman Dara L
Publikováno v:
Journal of Cardiovascular Magnetic Resonance, Vol 10, Iss Suppl 1, p A175 (2008)
Externí odkaz:
https://doaj.org/article/b2ad8f793d1341f58b17d70376717448
Publikováno v:
In Journal of the American College of Radiology April 2024 21(4):591-600
We propose a method to facilitate exploration and analysis of new large data sets. In particular, we give an unsupervised deep learning approach to learning a latent representation that captures semantic similarity in the data set. The core idea is t
Externí odkaz:
http://arxiv.org/abs/2012.12175
Autor:
Huang Gary, Wang Dan, Khan Unab I, Zeb Irfan, Manson JoAnn E, Miller Virginia, Hodis Howard N, Budoff Matthew J, Merriam George R, Harman Mitchell S, Brinton Eliot A, Cedars Marcelle I, Su Yali, Lobo Rogerio A, Naftolin Frederick, Santoro Nanette, Taylor Hugh S, Wildman Rachel P
Publikováno v:
Cardiovascular Diabetology, Vol 11, Iss 1, p 52 (2012)
Abstract Background The published literature regarding the relationships between retinol-binding protein 4 (RBP4) and cardiometabolic risk factors and subclinical atherosclerosis is conflicting, likely due, in part, to limitations of frequently used
Externí odkaz:
https://doaj.org/article/3735d1df1a6b4c2ba09d7801f4ce40d6
Autor:
Huang, Gary Y., Kumar, Manoj, Liu, Xinsheng, Irwanto, Deni, Zhou, You, Chirapa, Ethel, Xu, Ying H., Shulruf, Boaz, Chan, Daniel K.Y.
Publikováno v:
In Journal of the American Medical Directors Association October 2023 24(10):1471-1477
Extracting a connectome from an electron microscopy (EM) data set requires identification of neurons and determination of synapses between neurons. As manual extraction of this information is very time-consuming, there has been extensive research eff
Externí odkaz:
http://arxiv.org/abs/1604.03075
Autor:
Zhao, Ting, Takemura, Shin-ya, Huang, Gary B., Horne, Jane Anne, Katz, William T., Shinomiya, Kazunori, Scheffer, Louis K., Meinertzhagen, Ian A., Rivlin, Patricia K., Plaza, Stephen M.
The promise of extracting connectomes and performing useful analysis on large electron microscopy (EM) datasets has been an elusive dream for many years. Tracing in even the smallest portions of neuropil requires copious human annotation, the rate-li
Externí odkaz:
http://arxiv.org/abs/1508.06232
Autor:
Huang, Gary B., Plaza, Stephen
In this work, we propose a learning framework for identifying synapses using a deep and wide multi-scale recursive (DAWMR) network, previously considered in image segmentation applications. We apply this approach on electron microscopy data from inve
Externí odkaz:
http://arxiv.org/abs/1409.1789