Zobrazeno 1 - 10
of 120
pro vyhledávání: '"Huang, Yuke"'
Publikováno v:
In Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena August 2023 173
Autor:
Chen, Xi, Liu, Chang, Cui, Zedu, Huang, Yuke, Luo, Qian, Chen, Shuilian, Wang, Xiao, Hou, Xiangtao, Gong, Qian, Li, Yan, Qiu, Jin, Zhang, Yuxin, Chen, Pei, Yang, Ying, Zhuang, Jing, Yu, Keming
Publikováno v:
In Experimental Eye Research May 2023 230
Autor:
Yu, Na, Chen, Shuilian, Yang, Xifeng, Hou, Xiangtao, Wan, Linxi, Huang, Yuke, Qiu, Jin, Li, Yan, Zheng, Hua, Wei, Han, Zeng, Chenguang, Lei, Lei, Chen, Pei, Yang, Ying, Quan, Daping, Zhuang, Jing, Yu, Keming
Publikováno v:
In Acta Biomaterialia 15 September 2022 150:154-167
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Huang, Yuke, Wen, Zhiying
The Tribonacci sequence $\mathbb{T}$ is the fixed point of the substitution $\sigma(a,b,c)=(ab,ac,a)$. In this note, we get the explicit expressions of all squares, and then establish the tree structure of the positions of repeated squares in $\mathb
Externí odkaz:
http://arxiv.org/abs/1605.04505
Autor:
Huang, Yuke, Wen, Zhiying
The Tribonacci sequence $\mathbb{T}$ is the fixed point of the substitution $\sigma(a,b,c)=(ab,ac,a)$. In this note, we give the explicit expressions of the numbers of distinct squares and cubes in $\mathbb{T}[1,n]$ (the prefix of $\mathbb{T}$ of len
Externí odkaz:
http://arxiv.org/abs/1605.04503
Autor:
Huang, Yuke, Wen, Zhiying
The Fibonacci sequence $\mathbb{F}$ is the fixed point beginning with $a$ of morphism $\sigma(a,b)=(ab,a)$. In this paper, we get the explicit expressions of all squares and cubes, then we determine the number of distinct squares and cubes in $\mathb
Externí odkaz:
http://arxiv.org/abs/1603.04211
Autor:
Huang, Yuke, Wen, Zhiying
Let ${\cal P}$ be the set of palindromes occurring in the Fibonacci sequence. In this note, we establish three structures of $\mathcal{P}$ and and discuss their properties: cylinder structure, chain structure and recursive structure. Using these stru
Externí odkaz:
http://arxiv.org/abs/1601.04391
Publikováno v:
In Physica A: Statistical Mechanics and its Applications 15 July 2021 574
Autor:
Chen, Xi, Wan, Linxi, Ye, Yiming, Yao, Huan, Cui, Zedu, Huang, Yuke, Wang, Xiao, Hou, Xiangtao, Luo, Qian, Qiu, Jin, Li, Yan, Zhuang, Jing, Yu, Keming
Publikováno v:
European Journal of Ophthalmology; Jul2024, Vol. 34 Issue 4, p1135-1140, 6p