Zobrazeno 1 - 10
of 51
pro vyhledávání: '"Huang, Rongli"'
In this paper, we consider the existence of constant mean curvature hypersurfaces with prescribed gradient image. Let $\Omega$ and $\tilde{\Omega}$ be uniformly convex bounded domains in $\mathbb{R}^n$ with smooth boundary. We show that there exists
Externí odkaz:
http://arxiv.org/abs/2411.00817
In this paper, we consider the mean curvature flow of entire Lagrangian graphs with initial data in the pseudo-Euclidean space, which is related to the special Lagrangian parabolic equation. We show that the parabolic equation \eqref{11} has a smooth
Externí odkaz:
http://arxiv.org/abs/2410.17794
Autor:
Huang, Rongli
This is a sequel to [2] and [3], which study the second boundary value problems for mean curvature flow. Consequently, we construct the translating solitons with prescribed Gauss image in Minkowski space.
Comment: 28pages. arXiv admin note: text
Comment: 28pages. arXiv admin note: text
Externí odkaz:
http://arxiv.org/abs/2404.05972
Autor:
Huang, Rongli, Liang, Yongmei
In this paper, we study a class of special Lagrangian curvature potential equations and obtain the existence of smooth solutions for Dirichlet problem. The existence result is based on a priori estimates of global $C^{0}$, $C^{1}$ and $C^{2}$ norms o
Externí odkaz:
http://arxiv.org/abs/2208.10020
Autor:
Li, Sitong, Huang, Rongli
This is a sequel to [1] and [2], which study the second boundary problem for special Lagrangian curvature potential equation. As consequences, we obtain the existence and uniqueness of the smooth uniformly convex solution by the method of continuity
Externí odkaz:
http://arxiv.org/abs/2104.00372
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We show Bernstein type results for the entire self-shrinking solutions to Lagrangian mean curvature flow in $(\mathbb{R}^n\times\mathbb{R}^n, g_\tau)$. The proofs rely on a priori estimates and barriers construction.
Comment: 16 pages
Comment: 16 pages
Externí odkaz:
http://arxiv.org/abs/1904.07713
Considering the second boundary value problem of the Lagrangian mean curvature equation, we obtain the existence and uniqueness of the smooth uniformly convex solution, which generalizes the Brendle-Warren's theorem about minimal Lagrangian diffeomor
Externí odkaz:
http://arxiv.org/abs/1808.01139
This article is a continuation of earlier work [R.L. Huang and Y.H. Ye, On the second boundary value problem for a class of fully nonlinear flows I, to appear in International Mathematics Research Notices], where the long time existence and convergen
Externí odkaz:
http://arxiv.org/abs/1712.03793
Autor:
Huang, RongLi, Wang, ZhiZhang
Publikováno v:
Calc. Var. (2011) 41:321--339
The authors prove that the logarithmic Monge-Amp\`{e}re flow with uniformly bound and convex initial data satisfies uniform decay estimates away from time $t=0$. Then applying the decay estimates, we conclude that every entire classical strictly conv
Externí odkaz:
http://arxiv.org/abs/0911.2849