Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Huancas, Fernando"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Coronel, Aníbal, Huancas, Fernando
In this paper we study the asymptotic behavior of nonoscillatory solutions for high order differential equations of Poincar\'e type. We introduce two new and more weak than classical hypotheses on the coefficients, which implies a well posedness resu
Externí odkaz:
http://arxiv.org/abs/1805.05169
Publikováno v:
Mathematical Biosciences & Engineering; 2024, Vol. 21 Issue 11, p7554-28, 28p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this paper we prove the well-posedness and we study the asymptotic behavior of nonoscillatory $L^p$-solutions for a third order nonlinear scalar differential equation. The equation consists of two parts: a linear third order with constant coeffici
Externí odkaz:
http://arxiv.org/abs/1611.08756
In this paper, we introduce a nonresident computer virus model and prove the existence of at least one positive periodic solution. The proposed model is based on a biological approach and is obtained by considering that all rates (rates that the comp
Externí odkaz:
http://arxiv.org/abs/1610.09202
Autor:
Coronel, Aníbal1 (AUTHOR) acoronel@ubiobio.cl, Huancas, Fernando2 (AUTHOR) fhuancas@utem.cl, Lozada, Esperanza1 (AUTHOR), Rojas-Medar, Marko3 (AUTHOR) marko.medar@gmail.com
Publikováno v:
Symmetry (20738994). Jun2023, Vol. 15 Issue 6, p1224. 14p.
This article deals with the asymptotic behavior of fourth order differential equation where the coefficients are perturbations of linear constant coefficient equation. We introduce a change of variable and deduce that the new variable satisfies a thi
Externí odkaz:
http://arxiv.org/abs/1410.3011
Autor:
Coronel, Anibal, huancas, Fernando
In this paper we prove three power-exponential inequalities for positive real numbers. In particular, we conclude that this proofs give affirmatively answers to three, until now, open problems (conjectures~4.4, 2.1 and 2.2) posed by C{\^i}rtoaje in t
Externí odkaz:
http://arxiv.org/abs/1409.1968
Autor:
Coronel, Anibal, Huancas, Fernando
In this short note the authors give answers to the three open problems formulated by Wu and Srivastava [{\it Appl. Math. Lett. 25 (2012), 1347--1353}]. We disprove the Problem 1, by showing that there exists a triangle which does not satisfies the pr
Externí odkaz:
http://arxiv.org/abs/1408.3029