Zobrazeno 1 - 10
of 153
pro vyhledávání: '"Hu Jiangsheng"'
Publikováno v:
Open Mathematics, Vol 22, Iss 1, Pp pp. 11-32 (2024)
Let (A,C,ℬ)\left({\mathcal{A}},{\mathcal{C}},{\mathcal{ {\mathcal B} }}) be a recollement of exact categories. An explicit procedure about gluing complete hereditary cotorsion pairs from A{\mathcal{A}} and ℬ{\mathcal{ {\mathcal B} }} to C{\mathca
Externí odkaz:
https://doaj.org/article/60845d009dc04a6dbcce3b5eb4bb299b
Let $\mathcal{C}$ be a weakly idempotent complete extriangulated category. In contrast with the Hovey correspondence of admissible model structures on weakly idempotent complete exact categories from two complete cotorsion pairs, we give a constructi
Externí odkaz:
http://arxiv.org/abs/2406.14031
We define and study a notion of G-dimension for DG-modules over a non-positively graded commutative noetherian DG-ring $A$. Some criteria for the finiteness of the G-dimension of a DG-module are given by applying a DG-version of projective resolution
Externí odkaz:
http://arxiv.org/abs/2304.00527
Publikováno v:
J. Algebra, 2023, 635: 220-234
We study homological behavior of modules satisfying the Auslander condition. Assume that $\mathcal{AC}$ is the class of left $R$-modules satisfying the Auslander condition. It is proved that each cycle of an exact complex with each term in $\mathcal{
Externí odkaz:
http://arxiv.org/abs/2302.05850
Autor:
Chen, Hongxing, Hu, Jiangsheng
Dualities of resolving subcategories of finitely generated modules over Artin algebras are characterized as dualities with respect to Wakamatsu tilting bimodules. By restriction of these dualities to resolving subcategories of finitely generated modu
Externí odkaz:
http://arxiv.org/abs/2209.11627
Let $\Delta =\left(\begin{smallmatrix} A & {_AN_B}\\ {_BM_A} & B \\\end{smallmatrix}\right)$ be a Morita ring with $M\otimes_{A}N=0=N\otimes_{B}M$.We first study how to construct (complete) duality pairs of $\Delta$-modules using (complete) duality p
Externí odkaz:
http://arxiv.org/abs/2203.08673
Publikováno v:
Ark. Mat. 60 (2022), no. 2, 365-385
Let $\mathscr{C}$ be an $n$-exangulated category. In this note, we show that if $\mathscr{C}$ is locally finite, then $\mathscr{C}$ has Auslander-Reiten $n$-exangles. This unifies and extends results of Xiao-Zhu, Zhu-Zhuang, Zhou and Xie-Lu-Wang for
Externí odkaz:
http://arxiv.org/abs/2110.02476
Given a right exact functor from an abelian category into another abelian category, there is an associated abelian category called the comma category of the functor. In this paper, we characterize when left Frobenius pairs (resp. strong left Frobeniu
Externí odkaz:
http://arxiv.org/abs/2109.00933
Let $\mathcal{C}$ be a triangulated category. We first introduce the notion of balanced pairs in $\mathcal{C}$, and then establish the bijective correspondence between balanced pairs and proper classes $\xi$ with enough $\xi$-projectives and enough $
Externí odkaz:
http://arxiv.org/abs/2109.00932
Publikováno v:
Applied Categorical Structures, Volume 31, Article number: 15 (2023)
Herschend-Liu-Nakaoka introduced the notion of $n$-exangulated categories. It is not only a higher dimensional analogue of extriangulated categories defined by Nakaoka-Palu, but also gives a simultaneous generalization of $n$-exact categories and $(n
Externí odkaz:
http://arxiv.org/abs/2109.00196