Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Hu, Yuncong"'
Autor:
Zeng, Boyi, Wang, Lizheng, Hu, Yuncong, Xu, Yi, Zhou, Chenghu, Wang, Xinbing, Yu, Yu, Lin, Zhouhan
Protecting the copyright of large language models (LLMs) has become crucial due to their resource-intensive training and accompanying carefully designed licenses. However, identifying the original base model of an LLM is challenging due to potential
Externí odkaz:
http://arxiv.org/abs/2312.04828
Existing Visual Question Answering (VQA) models have explored various visual relationships between objects in the image to answer complex questions, which inevitably introduces irrelevant information brought by inaccurate object detection and text gr
Externí odkaz:
http://arxiv.org/abs/2204.00975
As the Internet of Things (IoT) emerges over the next decade, developing secure communication for IoT devices is of paramount importance. Achieving end-to-end encryption for large-scale IoT systems, like smart buildings or smart cities, is challengin
Externí odkaz:
http://arxiv.org/abs/1905.13369
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ma, Shuangyue, Pan, Xu, Gan, Jing, Guo, Xiaxin, He, Jiaheng, Hu, Haoyu, Wang, Yuncong, Ning, Shangwei, Zhi, Hui
Publikováno v:
Epigenetics; Dec2024, Vol. 19 Issue 1, p1-24, 24p
Autor:
Duan, Xiaobing, Hu, Jiali, Zhang, Yuncong, Zhao, Xiaoguang, Yang, Mingqi, Sun, Taoping, Liu, Siya, Chen, Xin, Feng, Juan, Li, Wenting, Yang, Ze, Zhang, Yitian, Lin, Xiaowen, Liu, Dingjie, Meng, Ya, Yang, Guang, Lin, Qiuping, Zhang, Guihai, Lei, Haihong, Yi, Zhengsheng
Publikováno v:
EMBO Molecular Medicine; Nov2024, Vol. 16 Issue 11, p3005-3025, 21p
Publikováno v:
Electric Power Information & Communication Technology / Dianli Xinxi yu Tongxin Jishu; Sep2024, Vol. 22 Issue 9, p33-44, 12p
We introduce a new class of succinct arguments, that we call elastic. Elastic SNARKs allow the prover to allocate different resources (such as memory and time) depending on the execution environment and the statement to prove. The resulting output is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______185::6e48991348ed1210d3a376cebb2b622c
https://infoscience.epfl.ch/record/295907
https://infoscience.epfl.ch/record/295907
Publikováno v:
Journal of Power Electronics; Apr2024, Vol. 24 Issue 4, p540-552, 13p