Zobrazeno 1 - 10
of 89
pro vyhledávání: '"Hryniv, Rostyslav"'
Autor:
Dobosevych, Oles, Hryniv, Rostyslav
Publikováno v:
In Applied Mathematics Letters January 2025 159
Autor:
Rumezhak, Taras, Dobosevych, Oles, Hryniv, Rostyslav, Selotkin, Vladyslav, Karpiv, Volodymyr, Maksymenko, Mykola
Publikováno v:
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, October, 2021, 2542-2550
3D scanning is a complex multistage process that generates a point cloud of an object typically containing damaged parts due to occlusions, reflections, shadows, scanner motion, specific properties of the object surface, imperfect reconstruction algo
Externí odkaz:
http://arxiv.org/abs/2201.01858
This paper proposes minimal solvers that use combinations of imaged translational symmetries and parallel scene lines to jointly estimate lens undistortion with either affine rectification or focal length and absolute orientation. We use constraints
Externí odkaz:
http://arxiv.org/abs/2011.08988
Autor:
Dobosevych, Oles, Hryniv, Rostyslav
For a given self-adjoint operator $A$ with discrete spectrum, we completely characterize possible eigenvalues of its rank-one perturbations~$B$ and discuss the inverse problem of reconstructing $B$ from its spectrum.
Comment: 19 pages
Comment: 19 pages
Externí odkaz:
http://arxiv.org/abs/2007.08841
We give a complete characterisation of the reflectionless Schr\"odinger operators on the line with integrable potentials, solve the inverse scattering problem of reconstructing such potentials from the eigenvalues and norming constants, and derive th
Externí odkaz:
http://arxiv.org/abs/2006.12782
Autor:
Dobosevych, Oles, Hryniv, Rostyslav
We characterize possible spectra of rank-one perturbations B of a self-adjoint operator A with discrete spectrum and, in particular, prove that the spectrum of B may include any number of real or non-real eigenvalues of arbitrary algebraic multiplici
Externí odkaz:
http://arxiv.org/abs/2006.12241
Autor:
Hryniv, Rostyslav, Mykytyuk, Yaroslav
We prove that the so-called first trace formula holds for all Schr\"odinger operators on the line with real-valued integrable potentials.
Comment: 13 pages; to appear in Journal of Spectral Theory
Comment: 13 pages; to appear in Journal of Spectral Theory
Externí odkaz:
http://arxiv.org/abs/2006.12206
Autor:
Hryniv, Rostyslav, Manko, Stepan
In this paper, we study the inverse scattering problem for energy-dependent Schr\"{o}dinger equations on the half-line with energy-dependent boundary conditions at the origin. Under certain positivity and very mild regularity assumptions, we transfor
Externí odkaz:
http://arxiv.org/abs/2006.12284
Autor:
Dobosevych, Oles, Hryniv, Rostyslav
Publikováno v:
In Linear Algebra and Its Applications 15 January 2021 609:339-364
Publikováno v:
Frontiers in Applied Mathematics & Statistics; 2024, p1-14, 14p