Zobrazeno 1 - 10
of 400
pro vyhledávání: '"Hron Karel"'
Reliable estimation and approximation of probability density functions is fundamental for their further processing. However, their specific properties, i.e. scale invariance and relative scale, prevent the use of standard methods of spline approximat
Externí odkaz:
http://arxiv.org/abs/2405.11615
Probability density functions form a specific class of functional data objects with intrinsic properties of scale invariance and relative scale characterized by the unit integral constraint. The Bayes spaces methodology respects their specific nature
Externí odkaz:
http://arxiv.org/abs/2405.02231
Compositional data are characterized by the fact that their elemental information is contained in simple pairwise logratios of the parts that constitute the composition. While pairwise logratios are typically easy to interpret, the number of possible
Externí odkaz:
http://arxiv.org/abs/2311.13911
Autor:
Grygar, Tomáš Matys, Radojičić, Una, Pavlů, Ivana, Greven, Sonja, Nešlehová, Johanna Genest, Tůmová, Štěpánka, Hron, Karel
Geochemical mapping of risk element concentrations in soils is performed in countries around the world. It results in large datasets of high analytical quality, which can be used to identify soils that violate individual legislative limits for safe f
Externí odkaz:
http://arxiv.org/abs/2310.13761
Bayes spaces were initially designed to provide a geometric framework for the modeling and analysis of distributional data. It has recently come to light that this methodology can be exploited to provide an orthogonal decomposition of bivariate proba
Externí odkaz:
http://arxiv.org/abs/2206.13898
Compositional data are commonly known as multivariate observations carrying relative information. Even though the case of vector or even two-factorial compositional data (compositional tables) is already well described in the literature, there is sti
Externí odkaz:
http://arxiv.org/abs/2201.10321
A new orthogonal decomposition for bivariate probability densities embedded in Bayes Hilbert spaces is derived. It allows one to represent a density into independent and interactive parts, the former being built as the product of revised definitions
Externí odkaz:
http://arxiv.org/abs/2012.12948
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.