Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Hoyt Burdick"'
Autor:
Hoyt Burdick, Eduardo Pino, Denise Gabel-Comeau, Carol Gu, Jonathan Roberts, Sidney Le, Joseph Slote, Nicholas Saber, Emily Pellegrini, Abigail Green-Saxena, Jana Hoffman, Ritankar Das
Publikováno v:
BMC Medical Informatics and Decision Making, Vol 20, Iss 1, Pp 1-10 (2020)
Abstract Background Severe sepsis and septic shock are among the leading causes of death in the United States and sepsis remains one of the most expensive conditions to diagnose and treat. Accurate early diagnosis and treatment can reduce the risk of
Externí odkaz:
https://doaj.org/article/8b37acccc4874a159454be0cf2d4bc26
Autor:
Jonathan Roberts, Andrea Mccoy, Hoyt Burdick, Eduardo Pino, Denise Gabel-Comeau, Carol Gu, Sidney Le, Joseph Slote, Emily Pellegrini, Abigail Green-Saxena, Jana Hoffman, Ritankar Das
Publikováno v:
BMJ Health & Care Informatics, Vol 27, Iss 1 (2020)
Background Severe sepsis and septic shock are among the leading causes of death in the USA. While early prediction of severe sepsis can reduce adverse patient outcomes, sepsis remains one of the most expensive conditions to diagnose and treat.Objecti
Externí odkaz:
https://doaj.org/article/468470960701428b8e3a44aa970ec1f5
Autor:
Angier Allen, Anna Siefkas, Emily Pellegrini, Hoyt Burdick, Gina Barnes, Jacob Calvert, Qingqing Mao, Ritankar Das
Publikováno v:
Applied Sciences, Vol 11, Iss 12, p 5576 (2021)
Background: Machine learning methods have been developed to predict the likelihood of a given event or classify patients into two or more diagnostic categories. Digital twin models, which forecast entire trajectories of patient health data, have pote
Externí odkaz:
https://doaj.org/article/2ddb76822b384f9e8266af3c6f174d41
Autor:
Nicole S. Zelin, Jacob Calvert, Ritankar Das, Gina Barnes, Gregory Braden, Jana Hoffman, Carson Lam, Qingqing Mao, R. Phillip Dellinger, Hoyt Burdick, Jean Louis Vincent, Anna Siefkas
Publikováno v:
Clinical therapeutics
Clinical Therapeutics
Clinical Therapeutics
Purpose: Coronavirus disease–2019 (COVID-19) continues to be a global threat and remains a significant cause of hospitalizations. Recent clinical guidelines have supported the use of corticosteroids or remdesivir in the treatment of COVID-19. Howev
Autor:
Anna Siefkas, Hoyt Burdick, Gina Barnes, Jacob Calvert, Ritankar Das, Emily Pellegrini, Qingqing Mao, Angier Allen
Publikováno v:
Applied Sciences
Applied Sciences, Vol 11, Iss 5576, p 5576 (2021)
Volume 11
Issue 12
Applied Sciences, Vol 11, Iss 5576, p 5576 (2021)
Volume 11
Issue 12
Background: Machine learning methods have been developed to predict the likelihood of a given event or classify patients into two or more diagnostic categories. Digital twin models, which forecast entire trajectories of patient health data, have pote
Autor:
Gina Barnes, Anna Siefkas, Hoyt Burdick, Gregory Braden, Abigail Green-Saxena, Jacob Calvert, Carson Lam, R. Phillip Dellinger, Ritankar Das, Jana Hoffman, Jean Louis Vincent, Emily Pellegrini, Andrea McCoy, Samson Mataraso
Publikováno v:
Journal of Clinical Medicine
Volume 9
Issue 12
Journal of Clinical Medicine, Vol 9, Iss 3834, p 3834 (2020)
Volume 9
Issue 12
Journal of Clinical Medicine, Vol 9, Iss 3834, p 3834 (2020)
Therapeutic agents for the novel coronavirus disease 2019 (COVID-19) have been proposed, but evidence supporting their use is limited. A machine learning algorithm was developed in order to identify a subpopulation of COVID-19 patients for whom hydro
Autor:
Anna Siefkas, Abigail Green-Saxena, Carson Lam, Gina Barnes, Jana Hoffman, Gregory Braden, Jacob Calvert, R. Phillip Dellinger, Hoyt Burdick, Emily Pellegrini, Andrea McCoy, Jean Louis Vincent, Ritankar Das, Samson Mataraso
Publikováno v:
Computers in biology and medicine, 124
Computers in Biology and Medicine
Computers in Biology and Medicine
Background: Currently, physicians are limited in their ability to provide an accurate prognosis for COVID-19 positive patients. Existing scoring systems have been ineffective for identifying patient decompensation. Machine learning (ML) may offer an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::626de2c628bca8c3a031df5163d5f32d
http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/312389
http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/312389
Autor:
Angier Allen, Samson Mataraso, Anna Siefkas, Hoyt Burdick, Gregory Braden, R Phillip Dellinger, Andrea McCoy, Emily Pellegrini, Jana Hoffman, Abigail Green-Saxena, Gina Barnes, Jacob Calvert, Ritankar Das
BACKGROUND Racial disparities in health care are well documented in the United States. As machine learning methods become more common in health care settings, it is important to ensure that these methods do not contribute to racial disparities throug
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cfba7e2b2a8482e27b09b062b72a55a9
https://doi.org/10.2196/preprints.22400
https://doi.org/10.2196/preprints.22400
Autor:
Liliana Tejidor, S. Kehoe, Elliott D. Crouser, Ritankar Das, E. Pino, Hoyt Burdick, S. Le, Samson Mataraso, J. Talbert, D. Persing, M. Pan, Jana Hoffman
Publikováno v:
B45. CRITICAL CARE: SEPSIS IDENTIFICATION AND MANAGEMENT.
Autor:
Carol Gu, S. Le, Jonathan Roberts, Hoyt Burdick, Denise Gabel-Comeau, Jana Hoffman, Nicholas Saber, Emily Pellegrini, Ritankar Das, E. Pino, Abigail Green-Saxena, Andrea McCoy, Joseph Slote
Publikováno v:
C101. SEPSIS IN THE HOSPITAL AND AROUND THE WORLD.