Zobrazeno 1 - 10
of 3 121
pro vyhledávání: '"Hoyois A"'
Autor:
Hoyois, Marc
We generalize several basic facts about the motivic sphere spectrum in $\mathbb A^1$-homotopy theory to the category $\mathrm{MS}$ of non-$\mathbb A^1$-invariant motivic spectra over a derived scheme. On the one hand, we show that all the Milnor-Witt
Externí odkaz:
http://arxiv.org/abs/2410.16757
We prove that Atiyah duality holds in the $\infty$-category of non-$\mathbb A^1$-invariant motivic spectra over arbitrary derived schemes: every smooth projective scheme is dualizable with dual given by the Thom spectrum of its negative tangent bundl
Externí odkaz:
http://arxiv.org/abs/2403.01561
Autor:
Hoyois, Marc, Opdan, Nikolai
We give an overview of the theory of framed correspondences in motivic homotopy theory. Motivic spaces with framed transfers are the analogue in motivic homotopy theory of $E_{\infty}$-spaces in classical homotopy theory, and in particular they provi
Externí odkaz:
http://arxiv.org/abs/2207.02276
We formulate and prove a Conner-Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable $\infty$-category of non-$\mathbb A^1$-invariant motivic spectra, which turns out to be equivalent to the $
Externí odkaz:
http://arxiv.org/abs/2303.02051
Autor:
Bachmann, Tom, Hoyois, Marc
We strengthen some results in \'etale (and real \'etale) motivic stable homotopy theory, by eliminating finiteness hypotheses, additional localizations and/or extending to spectra from HZ-modules.
Comment: 4 pages, paper by Tom Bachmann, appendi
Comment: 4 pages, paper by Tom Bachmann, appendi
Externí odkaz:
http://arxiv.org/abs/2104.06002
Autor:
Rousselle, Hippolyte, author
Publikováno v:
Bibliographie Montoise: Annales de L’Imprimerie à Mons Depuis 1580 Jusqu’À Nos Jours. :657-687
Autor:
Rousselle, Hippolyte, author
Publikováno v:
Bibliographie Montoise: Annales de L’Imprimerie à Mons Depuis 1580 Jusqu’À Nos Jours. :484-511
Autor:
Poncet, Olivier
Publikováno v:
Bibliothèque de l’École des chartes, 2011 Jan 01. 169(1), 336-337.
Externí odkaz:
https://www.jstor.org/stable/43014743
We show that the hermitian K-theory space of a commutative ring R can be identified, up to A^1-homotopy, with the group completion of the groupoid of oriented finite Gorenstein R-algebras, i.e., finite locally free R-algebras with trivialized dualizi
Externí odkaz:
http://arxiv.org/abs/2103.15474
Publikováno v:
Journal of the American Mathematical Society; Jan2025, Vol. 38 Issue 1, p243-289, 47p