Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Houédanou, Koffi Wilfrid"'
Autor:
Houédanou Koffi Wilfrid
Publikováno v:
Partial Differential Equations in Applied Mathematics, Vol 12, Iss , Pp 100952- (2024)
This paper presents an a posteriori error analysis for the problem defining the interaction between a free fluid and poroelastic structure approximated by finite element methods on anisotropic meshes in Rd, d=2 or 3. Korn’s inequality for piecewise
Externí odkaz:
https://doaj.org/article/38426ed9c7724f8caa03dbca00c06be9
Autor:
Houédanou, Koffi Wilfrid
In this work we develop an a posteriori error analysis of a conforming mixed finite element method for solving the coupled problem arising in the interaction between a free fluid and a fluid in a poroelastic medium on isotropic meshes in $\mathbb{R}^
Externí odkaz:
http://arxiv.org/abs/2004.10676
In this paper we develop a new a posteriori error analysis for the Monge-Amp\`ere equation approximated by conforming finite element method on isotropic meshes in 2D. The approach utilizes a slight variant of the mixed discretization proposed by Gera
Externí odkaz:
http://arxiv.org/abs/1912.02690
In this paper we develop an a posteriori error analysis for the stationary Stokes-Darcy coupled problem approximated by conforming finite element method on isotropic meshes in $\mathbb{R}^d$, $d\in\{2,3\}$. The approach utilizes a new robust stabiliz
Externí odkaz:
http://arxiv.org/abs/1908.07454
Autor:
Houédanou, Koffi Wilfrid
In this paper we develop an a priori error analysis of a new unified mixed finite element method for the coupling of fluid flow with porous media flow in $\mathbb{R}^N$, $N\in\{2,3\}$ on isotropic meshes. Flows are governed by the Stokes and Darcy eq
Externí odkaz:
http://arxiv.org/abs/1908.01892
Publikováno v:
In Results in Applied Mathematics May 2022 14
We consider in this paper, a new a posteriori residual type error estimator of a conforming mixed finite element method for the coupling of fluid flow with porous media flow on isotropic meshes. Flows are governed by the Navier-Stokes and Darcy equat
Externí odkaz:
http://arxiv.org/abs/1703.01755
Autor:
Houedanou, Koffi Wilfrid
This paper presents an a posteriori error analysis for a coupled continuum pipe-flow/Darcy model in karst aquifers. We consider a unified anisotropic finite element discretization (i.e. elements with very large aspect ratio). Our analysis covers two-
Externí odkaz:
http://arxiv.org/abs/1702.08814
Autor:
Houédanou Koffi Wilfrid
Publikováno v:
Abstract and Applied Analysis, Vol 2021 (2021)
In this work, we develop an a posteriori error analysis of a conforming mixed finite element method for solving the coupled problem arising in the interaction between a free fluid and a fluid in a poroelastic medium on isotropic meshes in ℝd, d∈2
Externí odkaz:
https://doaj.org/article/543e16805fd74da49158f515d4f2f034
Nonconforming finite element methods for a Stokes/Biot fluid–poroelastic structure interaction model
Autor:
Houédanou Koffi Wilfrid
Publikováno v:
Results in Applied Mathematics, Vol 7, Iss , Pp 100127- (2020)
We analyze a strongly coupled mixed formulation of the problem defining the interaction between a free fluid and poroelastic structure. The free fluid is governed by the Stokes equations, while the flow in the poroelastic medium is modeled using the
Externí odkaz:
https://doaj.org/article/787b3663bfcf4be78c4acfdf63c9891e