Zobrazeno 1 - 10
of 153
pro vyhledávání: '"Horng-Tzer Yau"'
Publikováno v:
Oberwolfach Reports. 19:1501-1550
Publikováno v:
Communications in Mathematical Physics. 396:527-622
We consider Green's functions $G(z):=(H-z)^{-1}$ of Hermitian random band matrices $H$ on the $d$-dimensional lattice $(\mathbb Z/L\mathbb Z)^d$. The entries $h_{xy}=\bar h_{yx}$ of $H$ are independent centered complex Gaussian random variables with
Publikováno v:
Journal of the European Mathematical Society. 23:3707-3800
In this paper we establish eigenvector delocalization and bulk universality for L\'{e}vy matrices, which are real, symmetric, $N \times N$ random matrices $\textbf{H}$ whose upper triangular entries are independent, identically distributed $\alpha$-s
Publikováno v:
Advances in Mathematics. 346:1137-1332
We consider Dyson Brownian motion for classical values of β with deterministic initial data V. We prove that the local eigenvalue statistics coincide with the GOE/GUE in the fixed energy sense after time t ≳ 1 / N if the density of states of V is
Autor:
Christian Brennecke, Horng-Tzer Yau
Publikováno v:
Journal of Mathematical Physics. 63:073302
We provide a simple extension of Bolthausen's Morita type proof of the replica symmetric formula [E. Bolthausen, Stat. Mech. of Classical and Disordered Systems, pp. 63-93 (2018)] for the Sherrington-Kirkpatrick model and prove the replica symmetry f
Publikováno v:
Ann. Probab. 48, no. 2 (2020), 916-962
We consider the statistics of the extreme eigenvalues of sparse random matrices, a class of random matrices that includes the normalized adjacency matrices of the Erdős–Rényi graph $G(N,p)$. Tracy–Widom fluctuations of the extreme eigenvalues f
Autor:
Jake Marcinek, Horng-Tzer Yau
We study joint eigenvector distributions for large symmetric matrices in the presence of weak noise. Our main result asserts that every submatrix in the orthogonal matrix of eigenvectors converges to a multidimensional Gaussian distribution. The proo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e4fbb35a32186864ba389a3eee46e79b
Autor:
Craig A. Tracy, Jürg Fröhlich, Jennifer Chayes, George E. Andrews, Harold Widom, Joel L. Lebowitz, Andrew V. Sills, Pavel Bleher, Krishnaswami Alladi, Stephen L Adler, Hugh L. Montgomery, Andrew Odlyzko, Horng-Tzer Yau, Juan M Maldacena
Publikováno v:
Notices of the American Mathematical Society. 68:1
Autor:
Horng-Tzer Yau, Benjamin Landon
Publikováno v:
Communications in Mathematical Physics. 355:949-1000
We analyze the rate of convergence of the local statistics of Dyson Brownian motion to the GOE/GUE for short times $t=o(1)$ with deterministic initial data V . Our main result states that if the density of states of $V$ is bounded both above and away