Zobrazeno 1 - 10
of 340
pro vyhledávání: '"Horng-Tzer Yau"'
Publikováno v:
Journal of Statistical Physics. Aug2019, Vol. 176 Issue 3, p505-509. 5p.
Publikováno v:
Oberwolfach Reports. 19:1501-1550
Publikováno v:
Communications in Mathematical Physics. 396:527-622
We consider Green's functions $G(z):=(H-z)^{-1}$ of Hermitian random band matrices $H$ on the $d$-dimensional lattice $(\mathbb Z/L\mathbb Z)^d$. The entries $h_{xy}=\bar h_{yx}$ of $H$ are independent centered complex Gaussian random variables with
Publikováno v:
Journal of the European Mathematical Society (EMS Publishing); 2021, Vol. 23 Issue 11, p3707-3800, 94p
Publikováno v:
Journal of the European Mathematical Society. 23:3707-3800
In this paper we establish eigenvector delocalization and bulk universality for L\'{e}vy matrices, which are real, symmetric, $N \times N$ random matrices $\textbf{H}$ whose upper triangular entries are independent, identically distributed $\alpha$-s
Autor:
Erdős, László1 lerdos@math.lmu.de, Horng-Tzer Yau2 htyau@math.harvard.edu
Publikováno v:
Bulletin (New Series) of the American Mathematical Society. Jul2012, Vol. 49 Issue 3, p377-414. 38p.
Publikováno v:
Advances in Mathematics. 346:1137-1332
We consider Dyson Brownian motion for classical values of β with deterministic initial data V. We prove that the local eigenvalue statistics coincide with the GOE/GUE in the fixed energy sense after time t ≳ 1 / N if the density of states of V is
Autor:
Christian Brennecke, Horng-Tzer Yau
Publikováno v:
Journal of Mathematical Physics. 63:073302
We provide a simple extension of Bolthausen's Morita type proof of the replica symmetric formula [E. Bolthausen, Stat. Mech. of Classical and Disordered Systems, pp. 63-93 (2018)] for the Sherrington-Kirkpatrick model and prove the replica symmetry f
Publikováno v:
Ann. Probab. 48, no. 2 (2020), 916-962
We consider the statistics of the extreme eigenvalues of sparse random matrices, a class of random matrices that includes the normalized adjacency matrices of the Erdős–Rényi graph $G(N,p)$. Tracy–Widom fluctuations of the extreme eigenvalues f