Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Hooman Nezamfar"'
Publikováno v:
Brain Sciences, Vol 8, Iss 7, p 130 (2018)
Even with state-of-the-art techniques there are individuals whose paralysis prevents them from communicating with others. Brain–Computer-Interfaces (BCI) aim to utilize brain waves to construct a voice for those whose needs remain unmet. In this pa
Externí odkaz:
https://doaj.org/article/b3c32a9699b140d198b9b0d7adc58124
Publikováno v:
International Journal of Information and Communication Technology Research, Vol 2, Iss 1, Pp 11-19 (2010)
Maximum Likelihood (ML) estimation of the frequency offset between the transmitter and the receiver from known transmitted preambles is the dominant technique for the estimation of Carrier Frequency Offset (CFO) in OFDM systems. A general formulation
Externí odkaz:
https://doaj.org/article/9e487e44548a4d4b809825c17df10921
Autor:
Virginia R. de Sa, Hooman Nezamfar, Büşra Tuğçe Susam, Kenneth D. Craig, Murat Akcakaya, Damaris Diaz, Jeannie S. Huang, Xiaojing Xu, Matthew S. Goodwin, Nathan T. Riek
Publikováno v:
IEEE Transactions on Biomedical Engineering. 69:422-431
Pain assessment in children continues to challenge clinicians and researchers, as subjective experiences of pain require inference through observable behaviors, both involuntary and deliberate. The presented approach supplements the subjective self-r
Autor:
Fallahi M, Kenney P, Gomes X, Lei R, Kemper A, Shankar Shastry, Knopf C, Reel R, Nestor Castillo, Hashemzadeh H, Tram H, Tarbox R, Choudhary P, Tumurbaatar E, Clark Ta, Brian Baxter, Roy S, Yang F, Hsie L, Shtern D, Nieboer J, Sha K, Hooman Nezamfar, Lundy J, Chen Y, Golnabi H, Ramachandran A, Rategh H, Thomas C, Hesaam Esfandyarpour, Dong B, Ali Nabi, Spence E, Schweidenback C, Ho A, Ung R, Wang L, Barua A, Sutton G, Stern S, Sankar S, Saurabh Paliwal, Kim E, Srijeeta Bagchi, Jouzi M, Narin S. Tangprasertchai, Thomas A, Babu Ras, Bronson B, Stingley S, Lee F, Monier N, Parizi Kb, Ronald W. Davis, Witney Fr, Meysam R. Barmi, Tanti P, LoPrete E, Cahill M, Sood, Doomson S, Mazouchi A
High throughput DNA sequencing technologies have undergone tremendous development over the past decade. Although optical detection-based sequencing has constituted the majority of data output, it requires a large capital investment and aggregation of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aeb427591265bfec940e226fbd49c431
https://doi.org/10.1101/604553
https://doi.org/10.1101/604553
Autor:
Kenneth D. Craig, Damaris Diaz, Hooman Nezamfar, Büşra Tuğçe Susam, Xiaojing Xu, Virginia R. de Sa, Matthew S. Goodwin, Murat Akcakaya, Jeannie S. Huang
Publikováno v:
EMBC
Objective pain assessment is required for appropriate pain management in the clinical setting. However, clinical gold standard pain assessment is based on subjective methods. Automated pain detection from physiological data may provide important obje
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3c437e6e7784f4c07275189675591a7a
https://escholarship.org/uc/item/0mn100qm
https://escholarship.org/uc/item/0mn100qm
Autor:
Golnaz Eftekhari Yazdi, Mohammad Moghadamfalahi, Hooman Nezamfar, Murat Akcakaya, Deniz Erdogmus, Bahram Shafai
Publikováno v:
WAC
Brain computer interfaces (BCIs) have attracted great attention for human computer interaction. In BCIs that are based on electroencephalography (EEG), low signal-to-noise ratio causes user intent inference to be error-prone and uncertain. Thus, the
Publikováno v:
IEEE Signal Processing Letters. 22:743-747
Currently, many Brain Computer Interfaces (BCI) classifiers output point estimates of user intent which make it difficult to incorporate context prior information or assign a principled confidence measurement to a decision. We propose a Bayesian fram
Autor:
Deniz Erdogmus, Hooman Nezamfar, Marzieh Haghighi, Mohammad Moghadamfalahi, Seyed Sadegh Mohseni Salehi
Publikováno v:
EMBC
Noninvasive brain computer interfaces (BCI), and more specifically Electroencephalography (EEG) based systems for intent detection need to compensate for the low signal to noise ratio of EEG signals. In many applications, the temporal dependency info
Autor:
Seyed Sadegh Mohseni Salehi, Deniz Erdogmus, Mohammad Moghadamfalahi, Hooman Nezamfar, Fernando Quivira, Alexander Piers
Publikováno v:
EMBC
Brain computer interfaces (BCIs) offer individuals suffering from major disabilities an alternative method to interact with their environment. Sensorimotor rhythm (SMRs) based BCIs can successfully perform control tasks; however, the traditional SMR
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e4199a3d63b49dbb2e997e392ba513be
http://arxiv.org/abs/1703.02929
http://arxiv.org/abs/1703.02929