Zobrazeno 1 - 10
of 163
pro vyhledávání: '"Hoogi A"'
X-ray imaging is a fundamental clinical tool for screening and diagnosing various diseases. However, the spatial resolution of radiographs is often limited, making it challenging to diagnose small image details and leading to difficulties in identify
Externí odkaz:
http://arxiv.org/abs/2306.03983
The performance improvement of deep networks significantly depends on their optimizers. With existing optimizers, precise and efficient recognition of the gradients trend remains a challenge. Existing optimizers predominantly adopt techniques based o
Externí odkaz:
http://arxiv.org/abs/2306.01423
Autor:
Shiran Hoogi, Tilda Barliya, Raphaëlle Toledano Zur, Orna Atar, Ifat Abramovich, Eyal Gottlieb, Noga Ron-Harel, Cyrille J Cohen
Publikováno v:
Journal for ImmunoTherapy of Cancer, Vol 12, Iss 7 (2024)
Background T cells play a central role in the antitumor response. However, they often face numerous hurdles in the tumor microenvironment, including the scarcity of available essential metabolites such as glucose and amino acids. Moreover, cancer cel
Externí odkaz:
https://doaj.org/article/16ec3a00ba5d425897d819d2c3231f34
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Hatamizadeh, Ali, Hoogi, Assaf, Sengupta, Debleena, Lu, Wuyue, Wilcox, Brian, Rubin, Daniel, Terzopoulos, Demetri
Publikováno v:
MLMI 2019
Lesion segmentation is an important problem in computer-assisted diagnosis that remains challenging due to the prevalence of low contrast, irregular boundaries that are unamenable to shape priors. We introduce Deep Active Lesion Segmentation (DALS),
Externí odkaz:
http://arxiv.org/abs/1908.06933
Reconstructing observed images from fMRI brain recordings is challenging. Unfortunately, acquiring sufficient "labeled" pairs of {Image, fMRI} (i.e., images with their corresponding fMRI responses) to span the huge space of natural images is prohibit
Externí odkaz:
http://arxiv.org/abs/1907.02431
We propose a novel architecture for object classification, called Self-Attention Capsule Networks (SACN). SACN is the first model that incorporates the Self-Attention mechanism as an integral layer within the Capsule Network (CapsNet). While the Self
Externí odkaz:
http://arxiv.org/abs/1904.12483
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Deep metric learning has been demonstrated to be highly effective in learning semantic representation and encoding information that can be used to measure data similarity, by relying on the embedding learned from metric learning. At the same time, va
Externí odkaz:
http://arxiv.org/abs/1802.04403
Autor:
Gaziv, Guy, Beliy, Roman, Granot, Niv, Hoogi, Assaf, Strappini, Francesca, Golan, Tal, Irani, Michal
Publikováno v:
In NeuroImage 1 July 2022 254