Zobrazeno 1 - 10
of 66
pro vyhledávání: '"Hongya Gao"'
We present two generalizations of the classical Stampacchia Lemma which contain a non-decreasing non-negative function $g$, and give applications. As a first application, we deal with variational integrals of the form $$ {\cal J} (u;\Omega) = \int_{\
Externí odkaz:
http://arxiv.org/abs/2402.09455
Publikováno v:
Journal of Applied Mathematics, Vol 2014 (2014)
Externí odkaz:
https://doaj.org/article/c1bdfb153826410191f6eac5e8e4e398
Publikováno v:
Abstract and Applied Analysis, Vol 2014 (2014)
We apply the extensions of the Abian-Brown fixed point theorem for set-valued mappings on chain-complete posets to examine the existence of generalized and extended saddle points of bifunctions defined on posets. We also study the generalized and ext
Externí odkaz:
https://doaj.org/article/41d0deb8e7ae4a6496f39b074a16e1c2
Publikováno v:
Abstract and Applied Analysis, Vol 2013 (2013)
A function space, Lθ,∞)(Ω), 0≤θ
Externí odkaz:
https://doaj.org/article/059431da088e4616b4281a91fd00a3c1
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2012 (2012)
This paper deals with anisotropic obstacle problem for the 𝒜-harmonic equation ∑i=1nDi(ai(x,Du(x)))=0. An integrability result is given under suitable assumptions, which show higher integrability of the boundary datum, and the obstacle force sol
Externí odkaz:
https://doaj.org/article/ea11307e87ea4f57be22e5fd2442ce4c
Publikováno v:
Abstract and Applied Analysis, Vol 2011 (2011)
For 10 with a≠b. Here, Hω(a,b) and Ar(a,b) are the generalized Heronian and the power means of two positive numbers a and b, respectively.
Externí odkaz:
https://doaj.org/article/3eb6de600f4248859f23d31428804de5
Autor:
Hongya Gao, Jinjing Qiao
Publikováno v:
Journal of Inequalities and Applications, Vol 2011, Iss 1, p 58 (2011)
Abstract This paper gives a Caccioppoli-type estimate for very weak solutions to obstacle problems of the A -harmonic equation div A ( x , ∇ u ) = 0 with | A ( x , ξ ) | ≈ w ( x ) | ξ | p - 1 , where 1 < p < ∞ and w(x) be a Muckenhoupt A1 wei
Externí odkaz:
https://doaj.org/article/cd591687da3d4931ad68437ffe99516b
Publikováno v:
Journal of Inequalities and Applications, Vol 2010, Iss 1, p 878769 (2010)
Local regularity and local boundedness results for very weak solutions of obstacle problems of the -harmonic equation are obtained by using the theory of Hodge decomposition, where .
Externí odkaz:
https://doaj.org/article/4b6f8dd6b571489ea3eb31519b12aec0
Publikováno v:
Journal of Inequalities and Applications, Vol 2008, Iss 1, p 835736 (2008)
Abstract This paper gives some local regularity results for minima of anisotropic functionals , and for solutions of anisotropic equations , which can be regarded as generalizations of the classical results.
Externí odkaz:
https://doaj.org/article/20b3e93fd5e5400bbf164423d95ec2b0
Autor:
Hongya Gao, Hua Zhang
Publikováno v:
Journal of Inequalities and Applications, Vol 2005, Iss 2, p 867306 (2005)
We first prove local weighted Poincaré-type inequalities for differential forms. Then, by using the local results, we prove global weighted Poincaré-type inequalities for differential forms in John domains, which can be considered as generalization
Externí odkaz:
https://doaj.org/article/15788d0c6f114459907dc5c4ae0c8693