Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Hong-Yu Zhi"'
Autor:
Yu-wen Chen, Yu-jie Li, Peng Deng, Zhi-yong Yang, Kun-hua Zhong, Li-ge Zhang, Yang Chen, Hong-yu Zhi, Xiao-yan Hu, Jian-teng Gu, Jiao-lin Ning, Kai-zhi Lu, Ju Zhang, Zheng-yuan Xia, Xiao-lin Qin, Bin Yi
Publikováno v:
BMC Anesthesiology, Vol 22, Iss 1, Pp 1-11 (2022)
Abstract Background Dynamic prediction of patient mortality risk in the ICU with time series data is limited due to high dimensionality, uncertainty in sampling intervals, and other issues. A new deep learning method, temporal convolution network (TC
Externí odkaz:
https://doaj.org/article/a13f9db1907947c8984be86eb9fcc2ca
Autor:
Zhiyong Yang, Zheng-Yuan Xia, Peng Deng, Xiaojun Li, Yujie Li, Hong-Yu Zhi, Jiaolin Ning, Ju Zhang, Kaizhi Lu, Jianteng Gu, Yang Chen, Xi Tang, Peng Li, Xue-Hong Bai, Bin Yi, Kun-Hua Zhong, Xiaolin Qin, Yuwen Chen
Publikováno v:
Journal of Clinical and Translational Hepatology
Background and Aims Screening for hepatopulmonary syndrome in cirrhotic patients is limited due to the need to perform contrast enhanced echocardiography (CEE) and arterial blood gas (ABG) analysis. We aimed to develop a simple and quick method to sc
Autor:
Yu-wen Chen, Yu-jie Li, Peng Deng, Zhi-yong Yang, Kun-hua Zhong, Li-ge Zhang, Yang Chen, Hong-yu Zhi, Xiao-yan Hu, Jian-teng Gu, Jiao-lin Ning, Kai-zhi Lu, Ju Zhang, Zheng-yuan Xia, Xiao-lin Qin, Bin Yi
Publikováno v:
BMC anesthesiology. 22(1)
BackgroundDynamic prediction of patient mortality risk in the ICU with time series data is limited due to high dimensionality, uncertainty in sampling intervals, and other issues. A new deep learning method, temporal convolution network (TCN), makes
Autor:
Yujie Li, Ju Zhang, Kaizhi Lu, Jianteng Gu, Yang Chen, Lin Chen, Dan-Dan Wang, Jiaolin Ning, Zheng-Yuan Xia, He Wenquan, Dan-Feng Li, Xue-Hong Bai, Hong-Yu Zhi, Li-Ge Zhang, Yuwen Chen, Bin Yi, Kun-Hua Zhong, Xiaolin Qin, Zhiyong Yang
Publikováno v:
Ann Transl Med
Background Dynamic and precise estimation of blood loss (EBL) is quite important for perioperative management. To date, the Triton System, based on feature extraction technology (FET), has been applied to estimate intra-operative haemoglobin (Hb) los
Autor:
Hong-Yu Zhi, Jiaoling Ning, Jian Huang, Yujie Li, Kaizhi Lu, Congwen Yang, Zheng-Yuan Xia, Bin Yi, Xi Tang, Karine Belguise, Yihui Yang, Xiaobo Wang, Jianteng Gu, Yang Chen
As important mediators of intercellular communication, exosome have can modulate various cellular functions by transferring a variety of intracellular components to target cells. However, little is known about the role of exosome-mediated communicati
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6a2cafb840390a69ea08a8ed0a93f9e3
https://doi.org/10.1101/2020.10.06.327874
https://doi.org/10.1101/2020.10.06.327874
Autor:
Yu-wen Chen, Yu-jie Li, Zhi-yong Yang, Kun-hua Zhong, Li-ge Zhang, Yang Chen, Hong-yu Zhi, Peng Deng, Dan-dan Wang, Jian-teng Gu, Jiao-lin Ning, Kai-zhi Lu, Ju Zhang, Zheng-yuan Xia, Bin Yi
Background: Dynamic prediction of patients’ mortality risk in ICU with time series data is limited due to the high dimensionality, uncertainty with sampling intervals, and other issues. New deep learning method, temporal convolution network (TCN),
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3f95678760267d8d70e1672203b823c4
https://doi.org/10.21203/rs.3.rs-44310/v2
https://doi.org/10.21203/rs.3.rs-44310/v2
Autor:
Yu-wen Chen, Yu-jie Li, Zhi-yong Yang, Kun-hua Zhong, Li-ge Zhang, Yang Chen, Hong-yu Zhi, Peng Deng, Dan-dan Wang, Jian-teng Gu, Jiao-lin Ning, Kai-zhi Lu, Ju Zhang, Zheng-yuan Xia, Bin Yi
Background Dynamic prediction of patients’ mortality risk in ICU with time series data is limited due to the high dimensionality, uncertainty with sampling intervals, and other issues. New deep learning method, temporal convolution network (TCN), m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::17cc0d92479cc98fc5f9fa2d018203d3
https://doi.org/10.21203/rs.3.rs-44310/v1
https://doi.org/10.21203/rs.3.rs-44310/v1
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.