Zobrazeno 1 - 10
of 2 706
pro vyhledávání: '"Homology spheres"'
Autor:
Neofytidis, Christoforos
For each $m\geq0$ and any prime $p\equiv3\ \mathrm{(mod \ 4)}$, we construct strongly chiral rational homology $(4m+3)$-spheres, which have real hyperbolic fundamental groups and only non-zero integral intermediate homology groups isomorphic to $\mat
Externí odkaz:
http://arxiv.org/abs/2411.05604
Autor:
Alegria, Linda V., Menasco, William W.
From classical knot theory we know that every knot in $S^3$ is the boundary of an oriented, embedded surface. A standard demonstration of this fact achieved by elementary technique comes from taking a regular projection of any knot and employing Seif
Externí odkaz:
http://arxiv.org/abs/2405.14805
Autor:
Ivanov, Sergei O., Mukoseev, Lev
The article is devoted to the magnitude homology of digraphs, with a primary focus on diagonal digraphs, i.e., digraphs whose magnitude homology is concentrated on the diagonal. For any digraph $G$, we provide a complete description of the second mag
Externí odkaz:
http://arxiv.org/abs/2405.04748
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Golla, Marco, Marengon, Marco
For every $n \ge 3$, we construct 2-component links in $S^{n+1}$ that are a split by an integer homology $n$-sphere, but not by $S^n$. In the special case $n=3$, i.e. that of 2-links in $S^4$, we produce an infinite family of links $L_\ell$ and of in
Externí odkaz:
http://arxiv.org/abs/2403.00064
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We show that the group of homeomorphisms of a compact contractible $d$-manifold which fix the boundary is contractible, as long as $d \geq 6$. We deduce this from a strong uniqueness statement for one-sided $h$-cobordisms.
Comment: 16 pages, 2 f
Comment: 16 pages, 2 f
Externí odkaz:
http://arxiv.org/abs/2308.15607
Autor:
Davis, Christopher William
In a groundbreaking work A. Levine proved the surprising result that there exist knots in homology spheres which are not smoothly concordant to any knot in $S^3$, even if one allows for concordances in homology cobordisms. Since then subsequent works
Externí odkaz:
http://arxiv.org/abs/2303.14509
Autor:
Daemi, Aliakbar, Eismeier, Mike Miller
In previous work, the second author defined 'equivariant instanton homology groups' $I^\bullet(Y,\pi;R)$ for a rational homology 3-sphere $Y$, a set of auxiliary data $\pi$, and a PID $R$. These objects are modules over the cohomology ring $H^{-*}(BS
Externí odkaz:
http://arxiv.org/abs/2210.14071
Autor:
Murakami, Yuya
In this paper, we prove a conjecture by Gukov-Pei-Putrov-Vafa for a wide class of plumbed 3-manifolds. Their conjecture states that Witten-Reshetikhin-Turaev (WRT) invariants are radial limits of homological blocks, which are $ q $-series introduced
Externí odkaz:
http://arxiv.org/abs/2205.01282