Zobrazeno 1 - 10
of 1 423
pro vyhledávání: '"Homogeneous vector bundles"'
Autor:
Correa, Eder M.
In this paper, we provide a detailed and systematic study of weak (singular) Hermite-Einstein structures on homogeneous holomorphic vector bundles over rational homogeneous varieties. We use standard tools from spectral geometry, Harmonic analysis, a
Externí odkaz:
http://arxiv.org/abs/2406.16243
In this work, we introduce a global theory of subelliptic pseudo-differential operators on arbitrary homogeneous vector bundles over orientable compact homogeneous manifolds. We will show that a global pseudo-differential calculus can be associated t
Externí odkaz:
http://arxiv.org/abs/2403.08990
Autor:
Cardona, Duván, Kowacs, André Pedroso
We establish necessary and sufficient conditions for the global hypoellipticity of $G$-invariant operators on homogeneous vector bundles. These criteria are established in terms of the corresponding matrix-valued symbols as developed by Ruzhansky and
Externí odkaz:
http://arxiv.org/abs/2310.17288
We construct a moduli space of semi-homogeneous vector bundles with a fixed N\'eron-Severi class $H$ on an abelian variety $A$ over an algebraically closed field of characteristic zero. When $A$ has totally degenerate reduction over a non-Archimedean
Externí odkaz:
http://arxiv.org/abs/2312.12980
The description of the Paley-Wiener space for compactly supported smooth functions $C^\infty_c(G)$ on a semi-simple Lie group $G$ involves certain intertwining conditions that are difficult to handle. In the present paper, we make them completely exp
Externí odkaz:
http://arxiv.org/abs/2203.02913
We study the Fourier transform for compactly supported distributional sections of complex homogeneous vector bundles on symmetric spaces of non-compact type $X = G/K$. We prove a characterisation of their range. In fact, from Delorme's Paley-Wiener t
Externí odkaz:
http://arxiv.org/abs/2202.06905
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Aronsson, Jimmy
$G$-equivariant convolutional neural networks (GCNNs) is a geometric deep learning model for data defined on a homogeneous $G$-space $\mathcal{M}$. GCNNs are designed to respect the global symmetry in $\mathcal{M}$, thereby facilitating learning. In
Externí odkaz:
http://arxiv.org/abs/2105.05400
Autor:
Martín, Rocío Díaz, Saal, Linda
The notion of Gelfand pair (G, K) can be generalized if we consider homogeneous vector bundles over G/K instead of the homogeneous space G/K and matrix-valued functions instead of scalar-valued functions. This gives the definition of commutative homo
Externí odkaz:
http://arxiv.org/abs/2002.07169
We rework the Mori-Mukai classification of Fano 3-folds, by describing each of the 105 families via biregular models as zero loci of general global sections of homogeneous vector bundles over products of Grassmannians.
Comment: Minor changes. To
Comment: Minor changes. To
Externí odkaz:
http://arxiv.org/abs/2009.13382