Zobrazeno 1 - 10
of 72
pro vyhledávání: '"Homburg, A.J."'
Autor:
Golmakani, A.1,2 (AUTHOR), Homburg, A.J.3 (AUTHOR) a.j.homburg@uva.nl
Publikováno v:
Dynamical Systems: An International Journal. Mar2011, Vol. 26 Issue 1, p61-76. 16p. 2 Diagrams, 1 Graph.
Autor:
Driesse, R.1 (AUTHOR), Homburg, A.J.1 (AUTHOR) A.J.Homburg@uva.nl
Publikováno v:
Dynamical Systems: An International Journal. Dec2009, Vol. 24 Issue 4, p459-471. 13p. 2 Diagrams.
Autor:
Homburg, A.J., Mramor, B.
Publikováno v:
Homburg, A J & Mramor, B 2010, ' Robust unbounded attractors for differential equations in R^3 ', Physica D. Nonlinear Phenomena, vol. 239, no. 3-4, pp. 202-206 . https://doi.org/10.1016/j.physd.2009.10.018
Physica D. Nonlinear Phenomena, 239(3-4), 202-206. Elsevier
Physica D, 239(3-4), 202-206. Elsevier
Physica D. Nonlinear Phenomena, 239(3-4), 202-206. Elsevier
Physica D, 239(3-4), 202-206. Elsevier
We construct unbounded strange attractors for vector fields in R^3 that are robust transitive under uniformly small perturbations. Their geometry is reminiscent of geometric Lorenz and other singular hyperbolic attractors, but they contain no equilib
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Homburg, A J, Young, T R & Gharaei, M 2013, Bifurcations of random differential equations . in A d'Onofrio (ed.), Bounded noises in physics, biology, and engineering . Modeling and simulation in science, engineering and technology, Birkhäuser, New York, pp. 133-149 . https://doi.org/10.1007/978-1-4614-7385-5_9
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::399b7493843e876e5e8bf98d670e4314
https://hdl.handle.net/1871.1/c9094cbe-0cf5-4bbe-b658-a1c5d667e57e
https://hdl.handle.net/1871.1/c9094cbe-0cf5-4bbe-b658-a1c5d667e57e
Autor:
Homburg, A.J., Young, T.R.
Publikováno v:
Topological Methods in Nonlinear Analysis, 35(1), 77-97. Juliusz Schauder Center
Homburg, A J & Young, T R 2010, ' Bifurcations of random differential equations with bounded noise on surfaces ', Topological methods in nonlinear analysis, vol. 35, no. 1, pp. 77-98 . < http://apcz.umk.pl/czasopisma/index.php/TMNA/article/view/TMNA.2010.006 >
Topological methods in nonlinear analysis, 35(1), 77-98. Nicolaus Copernicus University, Juliusz P. Schauder Centre for Nonlinear Studies
Homburg, A J & Young, T R 2010, ' Bifurcations of random differential equations with bounded noise on surfaces ', Topological methods in nonlinear analysis, vol. 35, no. 1, pp. 77-98 . < http://apcz.umk.pl/czasopisma/index.php/TMNA/article/view/TMNA.2010.006 >
Topological methods in nonlinear analysis, 35(1), 77-98. Nicolaus Copernicus University, Juliusz P. Schauder Centre for Nonlinear Studies
In random differential equations with bounded noise minimal forwardinvariant (MFI) sets play a central role since they support stationarymeasures. We study the stability and possible bifurcations of MFI sets.In dimensions 1 and 2 we classify all mini
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::2dc91da463e2a8d85d8418a32268ce7c
https://dare.uva.nl/personal/pure/en/publications/bifurcations-of-random-differential-equations-with-bounded-noise-on-surfaces(8b26837c-c23d-4ab0-85e1-f8633630d87e).html
https://dare.uva.nl/personal/pure/en/publications/bifurcations-of-random-differential-equations-with-bounded-noise-on-surfaces(8b26837c-c23d-4ab0-85e1-f8633630d87e).html
Publikováno v:
Homburg, A J & Sandstede, B 2010, Homoclinic and heteroclinic bifurcations in vector fields . in H W Broer, F Takens & B Hasselblatt (eds), Handbook of dynamical systems: volume 3 . North-Holland, Amsterdam, pp. 379-524 . https://doi.org/10.1016/S1874-575X(10)00316-4
Handbook of dynamical systems, 3, 379-524
Handbook of dynamical systems: volume 3, 379-524
STARTPAGE=379;ENDPAGE=524;TITLE=Handbook of dynamical systems: volume 3
Handbook of dynamical systems, 3, 379-524
Handbook of dynamical systems: volume 3, 379-524
STARTPAGE=379;ENDPAGE=524;TITLE=Handbook of dynamical systems: volume 3
An overview of homoclinic and heteroclinic bifurcation theory for autonomous vector fields is given. Specifically, homoclinic and heteroclinic bifurcations of codimension one and two in generic, equivariant, reversible, and conservative systems are r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::23b5d0d9f184a1ccb6def56b77ba3fbb
https://research.vu.nl/en/publications/fff6c6f3-4d97-404b-8b08-8ebe625b2e9c
https://research.vu.nl/en/publications/fff6c6f3-4d97-404b-8b08-8ebe625b2e9c
Autor:
Zmarrou, H., Homburg, A.J.
Publikováno v:
Discrete and Continuous Dynamical Systems-Series B, 10(2&3), 719-731. Southwest Missouri State University
We discuss iterates of random circle diffeomorphisms with identically distributed noise, where the noise is bounded and absolutely continuous. Using arguments of B. Deroin, V.A. Kleptsyn and A. Navas, we provide precise conditions under which random
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::45cdc3ab194d9261d437bdeb927b5371
https://dare.uva.nl/personal/pure/en/publications/dynamics-and-bifurcations-of-random-circle-diffeomorphisms(8dc15e77-3195-4b04-87d4-516639263cbe).html
https://dare.uva.nl/personal/pure/en/publications/dynamics-and-bifurcations-of-random-circle-diffeomorphisms(8dc15e77-3195-4b04-87d4-516639263cbe).html
Publikováno v:
Fixed Point Theory, 7(1), 43-63. House of the Book of Science
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::40b2c83e8c5a43e61541da6442a8c5bd
https://dare.uva.nl/personal/pure/en/publications/the-borsukulam-theorem-for-quasiruled-fredholm-maps(81ba522b-3e91-43cf-8ea4-bfec7cff73b7).html
https://dare.uva.nl/personal/pure/en/publications/the-borsukulam-theorem-for-quasiruled-fredholm-maps(81ba522b-3e91-43cf-8ea4-bfec7cff73b7).html
Autor:
Homburg, A.J., Young, T.
Publikováno v:
Regular & Chaotic Dynamics, 11, 247-258. Maik Nauka-Interperiodica Publishing
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::4a2656a9c557f34a55fd2c61435974a9
https://dare.uva.nl/personal/pure/en/publications/hard-bifurcations-in-dynamical-systems-with-bounded-random-perturbations(a2e31f2b-7541-4178-9432-c9ab27b16875).html
https://dare.uva.nl/personal/pure/en/publications/hard-bifurcations-in-dynamical-systems-with-bounded-random-perturbations(a2e31f2b-7541-4178-9432-c9ab27b16875).html