Zobrazeno 1 - 10
of 411
pro vyhledávání: '"Holomorphic vector bundle"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Goldman, William M.
Publikováno v:
Annals of Mathematics, 1997 Nov 01. 146(3), 475-507.
Externí odkaz:
https://www.jstor.org/stable/2952454
Autor:
Bashkin, Mikhail
Publikováno v:
Communications in Mathematics. 30
Let $\mathbf L_k$ be the holomorphic line bundle of degree $k \in \mathbb Z$ on the projective line. Here, the tuples $(k_1 k_2 k_3 k_4)$ for which there does not exists homogeneous non-split supermanifolds $CP^{1|4}_{k_1 k_2 k_3 k_4}$ associated wit
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Teng Huang
Publikováno v:
International Mathematics Research Notices. 2022:18035-18077
Let $E$ be a holomorphic vector bundle over a compact K\"{a}hler manifold $(X,\omega)$ with negative sectional curvature $sec\leq -K
Comment: 32 pages, Appeared in IMRN
Comment: 32 pages, Appeared in IMRN
Publikováno v:
Annals of Global Analysis and Geometry. 60:539-557
Since their introduction by Beilinson–Drinfeld (Opers, 1993. arXiv math/0501398; Quantization of Hitchin’s integrable system and Hecke eigensheaves, 1991), opers have seen several generalizations. In Biswas et al. (SIGMA Symmetry Integr Geom Meth
Publikováno v:
Journal de Mathématiques Pures et Appliquées. 149:28-46
We construct an irreducible holomorphic connection with SL ( 2 , R ) –monodromy on the trivial holomorphic vector bundle of rank two over a compact Riemann surface. This answers a question of Calsamiglia, Deroin, Heu and Loray in [5] .
Autor:
Ning Gan, Xiangyu Zhou
Publikováno v:
Chinese Annals of Mathematics, Series B. 41:929-938
Let X be a Hopf manifold with non-Abelian fundamental group and E be a holomorphic vector bundle over X, with trivial pull-back to ℂn − {0}. The authors show that there exists a line bundle L over X such that E ⊗ L has a nowhere vanishing secti
Autor:
Jie Tu
Publikováno v:
Geometriae Dedicata. 212:365-378
Given a holomorphic family of pairs $\{(X_t,E_t)\}$, where each $E_t$ is holomorphic vector bundle over compact complex manifold $X_t$. For small enough $t$, we get a correspondence between the Dolbeault complex of $E_t$-valued $(p,q)$-forms on $X_t$
Autor:
Péter Ivanics
Publikováno v:
Periodica Mathematica Hungarica. 81:20-45
The generic element of the moduli space of logarithmic connections with parabolic points on holomorphic vector bundle over the Riemann sphere can be represented by a Fuchsian equation with some singularities and some apparent singularities. We analyz