Zobrazeno 1 - 10
of 730
pro vyhledávání: '"Holm D"'
A generic approach to stochastic climate modelling is developed for the example of an idealized Atmosphere-Ocean model that rests upon Hasselmann's paradigm for stochastic climate models. Namely, stochasticity is incorporated into the fast moving atm
Externí odkaz:
http://arxiv.org/abs/2205.04560
This paper introduces the r-Camassa-Holm (r-CH) equation, which describes a geodesic flow on the manifold of diffeomorphisms acting on the real line induced by the W1,r metric. The conserved energy is for the problem is given by the full W1,r norm an
Externí odkaz:
http://arxiv.org/abs/2203.00058
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Crisan, D.1 (AUTHOR), Holm, D. D.1 (AUTHOR), Luesink, E.2 (AUTHOR) e.luesink@utwente.nl, Mensah, P. R.1 (AUTHOR), Pan, W.1 (AUTHOR)
Publikováno v:
Journal of Nonlinear Science. Oct2023, Vol. 33 Issue 5, p1-58. 58p.
We derive stochastic differential equations whose solutions follow the flow of a stochastic nonlinear Lie algebra operation on a configuration manifold. For this purpose, we develop a stochastic Clebsch action principle, in which the noise couples to
Externí odkaz:
http://arxiv.org/abs/1604.04554
We review the role of dual pairs in mechanics and use them to derive particle-like solutions to regularized incompressible fluid systems. In our case we have a dual pair resulting from the action of diffeomorphisms on point particles (essentially by
Externí odkaz:
http://arxiv.org/abs/1503.07650
Truncated Taylor expansions of smooth flow maps are used in Hamilton's principle to derive a multiscale Lagrangian particle representation of ideal fluid dynamics. Numerical simulations for scattering of solutions at one level of truncation are found
Externí odkaz:
http://arxiv.org/abs/1402.0086
Autor:
Gibbon, J. D., Holm, D. D.
Publikováno v:
Procedia IUTAM 9 (2013) 25 -- 31
Stretching and folding dynamics in the incompressible, stratified 3D Euler and Navier-Stokes equations are reviewed in the context of the vector $\bdB = \nabla q\times\nabla\theta$ where $q=\bom\cdot\nabla\theta$. The variable $\theta$ is the tempera
Externí odkaz:
http://arxiv.org/abs/1311.0382