Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Hofstadler, Julian"'
Autor:
Hofstadler, Julian
We study the Markov chain Monte Carlo (MCMC) estimator for numerical integration for functions that do not need to be square integrable w.r.t. the invariant distribution. For chains with a spectral gap we show that the absolute mean error for $L^p$ f
Externí odkaz:
http://arxiv.org/abs/2403.16920
We consider adaptive increasingly rare Markov chain Monte Carlo (AIR MCMC), which is an adaptive MCMC method, where the adaptation concerning the past happens less and less frequently over time. Under a contraction assumption for a Wasserstein-like f
Externí odkaz:
http://arxiv.org/abs/2402.12122
Autor:
Hofstadler, Julian, Rudolf, Daniel
We prove that a class of randomized integration methods, including averages based on $(t,d)$-sequences, Latin hypercube sampling, Frolov points as well as Cranley-Patterson rotations, consistently estimates expectations of integrable functions. Consi
Externí odkaz:
http://arxiv.org/abs/2203.17010
In this paper we show that the spherical cap discrepancy of the point set given by centers of pixels in the HEALPix tessellation (short for Hierarchical, Equal Area and iso-Latitude Pixelation) of unit $2$-sphere is lower and upper bounded by order s
Externí odkaz:
http://arxiv.org/abs/2203.07552
Autor:
Hofstadler, Julian, Rudolf, Daniel
Publikováno v:
In Journal of Complexity June 2023 76
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Studia Scientiarum Mathematicarum Hungarica; January 2024, Vol. 60 Issue: 4 p249-273, 25p
In this paper we show that the spherical cap discrepancy of the point set given by centers of pixels in the HEALPix tessellation (short for Hierarchical, Equal Area and iso-Latitude Pixelation) of unit $2$-sphere is lower and upper bounded by order s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::100559e63aa13fac20f45c008dcacba5
http://arxiv.org/abs/2203.07552
http://arxiv.org/abs/2203.07552