Zobrazeno 1 - 10
of 117
pro vyhledávání: '"Hofmann, Karl Heinrich"'
Autor:
Hofmann, Karl Heinrich, Kramer, Linus
We study group algebras for compact groups in the category of real and complex weakly complete vector spaces. We also show that the group algebra is a quotient of the weakly complete universal enveloping algebra of the Lie algebra of the compact grou
Externí odkaz:
http://arxiv.org/abs/1904.00806
Autor:
Dahmen, Rafael, Hofmann, Karl Heinrich
A weakly complete vector space over $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$ is isomorphic to $\mathbb{K}^X$ for some set $X$ algebraically and topologically. The significance of this type of topological vector spaces is illustrated by the
Externí odkaz:
http://arxiv.org/abs/1901.06986
Autor:
Dahmen, Rafael, Hofmann, Karl-Heinrich
A pro-Lie group $G$ is a topological group such that $G$ is isomorphic to the projective limit of all quotient groups $G/N$ (modulo closed normal subgroups $N$) such that $G/N$ is a finite dimensional real Lie group. A topological group is almost con
Externí odkaz:
http://arxiv.org/abs/1812.04838
Publikováno v:
Mathematische Annalen; Nov2024, Vol. 390 Issue 3, p3471-3511, 41p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We are concerned with questions of the following type. Suppose that $G$ and $K$ are topological groups belonging to a certain class $\cal K$ of spaces, and suppose that $\phi:K \to G$ is an abstract (i.e. not necessarily continuous) surjective group
Externí odkaz:
http://arxiv.org/abs/1611.05801
It is shown that a closed solvable subgroup of a connected Lie group is compactly generated. In particular, every discrete solvable subgroup of a connected Lie group is finitely generated. Generalizations to locally compact groups are discussed as fa
Externí odkaz:
http://arxiv.org/abs/0801.4234