Zobrazeno 1 - 10
of 192
pro vyhledávání: '"Hoffman Michael M"'
Autor:
Reinke, Annika, Tizabi, Minu D., Baumgartner, Michael, Eisenmann, Matthias, Heckmann-Nötzel, Doreen, Kavur, A. Emre, Rädsch, Tim, Sudre, Carole H., Acion, Laura, Antonelli, Michela, Arbel, Tal, Bakas, Spyridon, Benis, Arriel, Blaschko, Matthew, Buettner, Florian, Cardoso, M. Jorge, Cheplygina, Veronika, Chen, Jianxu, Christodoulou, Evangelia, Cimini, Beth A., Collins, Gary S., Farahani, Keyvan, Ferrer, Luciana, Galdran, Adrian, van Ginneken, Bram, Glocker, Ben, Godau, Patrick, Haase, Robert, Hashimoto, Daniel A., Hoffman, Michael M., Huisman, Merel, Isensee, Fabian, Jannin, Pierre, Kahn, Charles E., Kainmueller, Dagmar, Kainz, Bernhard, Karargyris, Alexandros, Karthikesalingam, Alan, Kenngott, Hannes, Kleesiek, Jens, Kofler, Florian, Kooi, Thijs, Kopp-Schneider, Annette, Kozubek, Michal, Kreshuk, Anna, Kurc, Tahsin, Landman, Bennett A., Litjens, Geert, Madani, Amin, Maier-Hein, Klaus, Martel, Anne L., Mattson, Peter, Meijering, Erik, Menze, Bjoern, Moons, Karel G. M., Müller, Henning, Nichyporuk, Brennan, Nickel, Felix, Petersen, Jens, Rafelski, Susanne M., Rajpoot, Nasir, Reyes, Mauricio, Riegler, Michael A., Rieke, Nicola, Saez-Rodriguez, Julio, Sánchez, Clara I., Shetty, Shravya, van Smeden, Maarten, Summers, Ronald M., Taha, Abdel A., Tiulpin, Aleksei, Tsaftaris, Sotirios A., Van Calster, Ben, Varoquaux, Gaël, Wiesenfarth, Manuel, Yaniv, Ziv R., Jäger, Paul F., Maier-Hein, Lena
Publikováno v:
Nature methods, 1-13 (2024)
Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in im
Externí odkaz:
http://arxiv.org/abs/2302.01790
Autor:
Maier-Hein, Lena, Reinke, Annika, Godau, Patrick, Tizabi, Minu D., Buettner, Florian, Christodoulou, Evangelia, Glocker, Ben, Isensee, Fabian, Kleesiek, Jens, Kozubek, Michal, Reyes, Mauricio, Riegler, Michael A., Wiesenfarth, Manuel, Kavur, A. Emre, Sudre, Carole H., Baumgartner, Michael, Eisenmann, Matthias, Heckmann-Nötzel, Doreen, Rädsch, Tim, Acion, Laura, Antonelli, Michela, Arbel, Tal, Bakas, Spyridon, Benis, Arriel, Blaschko, Matthew, Cardoso, M. Jorge, Cheplygina, Veronika, Cimini, Beth A., Collins, Gary S., Farahani, Keyvan, Ferrer, Luciana, Galdran, Adrian, van Ginneken, Bram, Haase, Robert, Hashimoto, Daniel A., Hoffman, Michael M., Huisman, Merel, Jannin, Pierre, Kahn, Charles E., Kainmueller, Dagmar, Kainz, Bernhard, Karargyris, Alexandros, Karthikesalingam, Alan, Kenngott, Hannes, Kofler, Florian, Kopp-Schneider, Annette, Kreshuk, Anna, Kurc, Tahsin, Landman, Bennett A., Litjens, Geert, Madani, Amin, Maier-Hein, Klaus, Martel, Anne L., Mattson, Peter, Meijering, Erik, Menze, Bjoern, Moons, Karel G. M., Müller, Henning, Nichyporuk, Brennan, Nickel, Felix, Petersen, Jens, Rajpoot, Nasir, Rieke, Nicola, Saez-Rodriguez, Julio, Sánchez, Clara I., Shetty, Shravya, van Smeden, Maarten, Summers, Ronald M., Taha, Abdel A., Tiulpin, Aleksei, Tsaftaris, Sotirios A., Van Calster, Ben, Varoquaux, Gaël, Jäger, Paul F.
Publikováno v:
Nature methods, 1-18 (2024)
Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. Particularly in automatic biomedical image analysis, chosen performance metrics often do not reflect the domain interest, thus fa
Externí odkaz:
http://arxiv.org/abs/2206.01653
Autor:
Reinke, Annika, Tizabi, Minu D., Sudre, Carole H., Eisenmann, Matthias, Rädsch, Tim, Baumgartner, Michael, Acion, Laura, Antonelli, Michela, Arbel, Tal, Bakas, Spyridon, Bankhead, Peter, Benis, Arriel, Blaschko, Matthew, Buettner, Florian, Cardoso, M. Jorge, Chen, Jianxu, Cheplygina, Veronika, Christodoulou, Evangelia, Cimini, Beth, Collins, Gary S., Engelhardt, Sandy, Farahani, Keyvan, Ferrer, Luciana, Galdran, Adrian, van Ginneken, Bram, Glocker, Ben, Godau, Patrick, Haase, Robert, Hamprecht, Fred, Hashimoto, Daniel A., Heckmann-Nötzel, Doreen, Hirsch, Peter, Hoffman, Michael M., Huisman, Merel, Isensee, Fabian, Jannin, Pierre, Kahn, Charles E., Kainmueller, Dagmar, Kainz, Bernhard, Karargyris, Alexandros, Karthikesalingam, Alan, Kavur, A. Emre, Kenngott, Hannes, Kleesiek, Jens, Kleppe, Andreas, Kohler, Sven, Kofler, Florian, Kopp-Schneider, Annette, Kooi, Thijs, Kozubek, Michal, Kreshuk, Anna, Kurc, Tahsin, Landman, Bennett A., Litjens, Geert, Madani, Amin, Maier-Hein, Klaus, Martel, Anne L., Mattson, Peter, Meijering, Erik, Menze, Bjoern, Moher, David, Moons, Karel G. M., Müller, Henning, Nichyporuk, Brennan, Nickel, Felix, Noyan, M. Alican, Petersen, Jens, Polat, Gorkem, Rafelski, Susanne M., Rajpoot, Nasir, Reyes, Mauricio, Rieke, Nicola, Riegler, Michael, Rivaz, Hassan, Saez-Rodriguez, Julio, Sánchez, Clara I., Schroeter, Julien, Saha, Anindo, Selver, M. Alper, Sharan, Lalith, Shetty, Shravya, van Smeden, Maarten, Stieltjes, Bram, Summers, Ronald M., Taha, Abdel A., Tiulpin, Aleksei, Tsaftaris, Sotirios A., Van Calster, Ben, Varoquaux, Gaël, Wiesenfarth, Manuel, Yaniv, Ziv R., Jäger, Paul, Maier-Hein, Lena
While the importance of automatic image analysis is continuously increasing, recent meta-research revealed major flaws with respect to algorithm validation. Performance metrics are particularly key for meaningful, objective, and transparent performan
Externí odkaz:
http://arxiv.org/abs/2104.05642
Publikováno v:
PLoS Comput Biol 17 (2021) e1009423
Segmentation and genome annotation (SAGA) algorithms are widely used to understand genome activity and gene regulation. These algorithms take as input epigenomic datasets, such as chromatin immunoprecipitation-sequencing (ChIP-seq) measurements of hi
Externí odkaz:
http://arxiv.org/abs/2101.00688
Many fields use the ROC curve and the PR curve as standard evaluations of binary classification methods. Analysis of ROC and PR, however, often gives misleading and inflated performance evaluations, especially with an imbalanced ground truth. Here, w
Externí odkaz:
http://arxiv.org/abs/2006.11278
Autor:
Haibe-Kains, Benjamin, Adam, George Alexandru, Hosny, Ahmed, Khodakarami, Farnoosh, Board, MAQC Society, Waldron, Levi, Wang, Bo, McIntosh, Chris, Kundaje, Anshul, Greene, Casey S., Hoffman, Michael M., Leek, Jeffrey T., Huber, Wolfgang, Brazma, Alvis, Pineau, Joelle, Tibshirani, Robert, Hastie, Trevor, Ioannidis, John P. A., Quackenbush, John, Aerts, Hugo J. W. L.
Publikováno v:
Nature 586 (2020) E14-E16
In their study, McKinney et al. showed the high potential of artificial intelligence for breast cancer screening. However, the lack of detailed methods and computer code undermines its scientific value. We identify obstacles hindering transparent and
Externí odkaz:
http://arxiv.org/abs/2003.00898
Publikováno v:
BMC Bioinformatics, Vol 12, Iss 1, p 415 (2011)
Abstract Background As genome-wide experiments and annotations become more prevalent, researchers increasingly require tools to help interpret data at this scale. Many functional genomics experiments involve partitioning the genome into labeled segme
Externí odkaz:
https://doaj.org/article/edbe4b569e4c44a4904402059df85823
Autor:
Zitnik, Marinka, Nguyen, Francis, Wang, Bo, Leskovec, Jure, Goldenberg, Anna, Hoffman, Michael M.
Publikováno v:
Information Fusion 50 (2019) 71-91
New technologies have enabled the investigation of biology and human health at an unprecedented scale and in multiple dimensions. These dimensions include a myriad of properties describing genome, epigenome, transcriptome, microbiome, phenotype, and
Externí odkaz:
http://arxiv.org/abs/1807.00123
Autor:
Wilson, Samantha L., Shen, Shu Yi, Harmon, Lauren, Burgener, Justin M., Triche, Tim, Jr., Bratman, Scott V., De Carvalho, Daniel D., Hoffman, Michael M.
Publikováno v:
In Cell Reports Methods 19 September 2022 2(9)
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.