Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Hlousek, Z. T."'
In quantum mechanics with minimal length uncertainty relations the Heisenberg-Weyl algebra of the one-dimensional harmonic oscillator is a deformed SU(1,1) algebra. The eigenvalues and eigenstates are constructed algebraically and they form the infin
Externí odkaz:
http://arxiv.org/abs/0712.2078
The Hamiltonian of a Coulomb plus polynomial potential on the Coulomb-Sturmian basis has an infinite symmetric band-matrix structure. A band matrix can always be considered as a block-tridiagonal matrix. So, the corresponding Green's operator can be
Externí odkaz:
http://arxiv.org/abs/math-ph/0612053
The two-body Coulomb Hamiltonian, when calculated in Coulomb-Sturmian basis, has an infinite symmetric tridiagonal form, also known as Jacobi matrix form. This Jacobi matrix structure involves a continued fraction representation for the inverse of th
Externí odkaz:
http://arxiv.org/abs/math-ph/0604037
We calculate resonances in three-body systems with attractive Coulomb potentials by solving the homogeneous Faddeev-Merkuriev integral equations for complex energies. The equations are solved by using the Coulomb-Sturmian separable expansion approach
Externí odkaz:
http://arxiv.org/abs/physics/0409149
We reconsider the homogeneous Faddeev-Merkuriev integral equations for three-body Coulombic systems with attractive Coulomb interactions and point out that the resonant solutions are contaminated with spurious resonances. The spurious solutions are r
Externí odkaz:
http://arxiv.org/abs/physics/0206069
A novel method for calculating resonances in three-body Coulombic systems is proposed. The Faddeev-Merkuriev integral equations are solved by applying the Coulomb-Sturmian separable expansion method. The $e^- e^+ e^-$ S-state resonances up to $n=5$ t
Externí odkaz:
http://arxiv.org/abs/physics/0106026
Three-potential formalism for the three-body scattering problem with attractive Coulomb interactions
A three-body scattering process in the presence of Coulomb interaction can be decomposed formally into a two-body single channel, a two-body multichannel and a genuine three-body scattering. The corresponding integral equations are coupled Lippmann-S
Externí odkaz:
http://arxiv.org/abs/physics/0102022
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
AIP Conference Proceedings; 2005, Vol. 768 Issue 1, p436-438, 3p