Zobrazeno 1 - 10
of 36
pro vyhledávání: '"Hjalte Wedel Vildhøj"'
Autor:
Hjalte Wedel Vildhøj, Søren Vind, Anders Roy Christiansen, Frederik Rye Skjoldjensen, Patrick Hagge Cording, Inge Li Gørtz, Philip Bille
Publikováno v:
Bille, P, Christiansen, A R, Cording, P H, Gørtz, I L, Skjoldjensen, F R, Vildhøj, H W & Vind, S 2018, ' Dynamic Relative Compression, Dynamic Partial Sums, and Substring Concatenation ', Algorithmica, vol. 80, no. 11, pp. 3207-3224 . https://doi.org/10.1007/s00453-017-0380-7
Given a static reference string R and a source string S, a relative compression of S with respect to R is an encoding of S as a sequence of references to substrings of R. Relative compression schemes are a classic model of compression and have recent
Publikováno v:
Bille, P, Ettienne, M B, Gørtz, I L & Vildhøj, H W 2017, Time-space trade-offs for lempel-ziv compressed indexing . in Proceedings of 28th Annual Symposium on Combinatorial Pattern Matching . Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Leibniz International Proceedings in Informatics, 28th Annual Symposium on Combinatorial Pattern Matching, Warsaw, Poland, 04/07/2017 . https://doi.org/10.4230/LIPIcs.CPM.2017.16
Given a string S, the compressed indexing problem is to preprocess S into a compressed representation that supports fast substring queries. The goal is to use little space relative to the compressed size of S while supporting fast queries. We present
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5aaa3f3db3606a53ea2b26eef2a7452f
Publikováno v:
String Processing and Information Retrieval ISBN: 9783319460482
SPIRE
SPIRE
We consider dynamic and online variants of 2D pattern matching between an \(m \times m\) pattern and an \(n \times n\) text. All the algorithms we give are randomised and give correct outputs with at least constant probability.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b69d7df0cd6349f82cee28da187b8198
https://doi.org/10.1007/978-3-319-46049-9_13
https://doi.org/10.1007/978-3-319-46049-9_13
Autor:
Johannes Fischer, Benjamin Sach, Inge Li Gørtz, Tsvi Kopelowitz, Philip Bille, Hjalte Wedel Vildhøj
Publikováno v:
Bille, P, Fischer, J, Gørtz, I L, Kopelowitz, T, Sach, B & Vildhøj, H W 2016, ' Sparse Text Indexing in Small Space ', A C M Transactions on Algorithms, vol. 12, no. 3, 39, pp. 1-19 . https://doi.org/10.1145/2836166
In this work, we present efficient algorithms for constructing sparse suffix trees, sparse suffix arrays, and sparse position heaps for b arbitrary positions of a text T of length n while using only O ( b ) words of space during the construction. Att
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8848063a5106225c8dbe42490e62b3ca
https://orbit.dtu.dk/en/publications/820ab6bf-15a4-4dc7-984d-757deb3d37dd
https://orbit.dtu.dk/en/publications/820ab6bf-15a4-4dc7-984d-757deb3d37dd
Autor:
Inge Li Gørtz, Hjalte Wedel Vildhøj, Mathias Bæk Tejs Knudsen, Philip Bille, Moshe Lewenstein
Publikováno v:
Combinatorial Pattern Matching ISBN: 9783319199283
CPM
CPM
The longest common extension problem (LCE problem) is to construct a data structure for an input string \(T\) of length \(n\) that supports \({\mathrm {LCE}}(i,j)\) queries. Such a query returns the length of the longest common prefix of the suffixes
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::019eb3db7744f02a3a16d9adaa763b28
https://doi.org/10.1007/978-3-319-19929-0_6
https://doi.org/10.1007/978-3-319-19929-0_6
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783319193144
IWOCA
IWOCA
In this paper we study the structure of suffix trees. Given an unlabeled tree \(\tau \) on n nodes and suffix links of its internal nodes, we ask the question “Is \(\tau \) a suffix tree?", i.e., is there a string S whose suffix tree has the same t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a98497b9adcacc6b49d0b04eb37e567b
https://doi.org/10.1007/978-3-319-19315-1_30
https://doi.org/10.1007/978-3-319-19315-1_30
Publikováno v:
Starikovskaya, T A & Vildhøj, H W 2015, ' A suffix tree or not a suffix tree? ', Journal of Discrete Algorithms, vol. 32, pp. 14-23 . https://doi.org/10.1016/j.jda.2015.01.005
In this paper we study the structure of suffix trees. Given an unlabeled tree $\tau$ on $n$ nodes and suffix links of its internal nodes, we ask the question "Is $\tau$ a suffix tree?", i.e., is there a string $S$ whose suffix tree has the same topol
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::74b35eace94e6d8e0cc9d47fe8d30831
http://arxiv.org/abs/1403.1364
http://arxiv.org/abs/1403.1364
Publikováno v:
Bille, P, Gørtz, I L, Sach, B & Vildhøj, H W 2014, ' Time–space trade-offs for longest common extensions ', Journal of Discrete Algorithms, vol. 25, pp. 42-50 . https://doi.org/10.1016/j.jda.2013.06.003
We revisit the longest common extension (LCE) problem, that is, preprocess a string T into a compact data structure that supports fast LCE queries. An LCE query takes a pair (i,j) of indices in T and returns the length of the longest common prefix of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::af537d05ba2285d0ef1705fca2f16627
https://orbit.dtu.dk/en/publications/376dbefe-b2c1-4ece-973b-cc33f266d293
https://orbit.dtu.dk/en/publications/376dbefe-b2c1-4ece-973b-cc33f266d293
Publikováno v:
Combinatorial Pattern Matching ISBN: 9783642389047
CPM
CPM
The Longest Common Substring problem is to compute the longest substring which occurs in at least d ≥ 2 of m strings of total length n. In this paper we ask the question whether this problem allows a deterministic time-space trade-off using O(n 1 +
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4cd7665d39034ed6bbb9a5e24c74d26d
https://doi.org/10.1007/978-3-642-38905-4_22
https://doi.org/10.1007/978-3-642-38905-4_22
Autor:
Johannes Fischer, Tsvi Kopelowitz, Inge Li Gørtz, Hjalte Wedel Vildhøj, Philip Bille, Benjamin Sach
Publikováno v:
Automata, Languages, and Programming ISBN: 9783642392054
ICALP (1)
ICALP (1)
We consider the problem of constructing a sparse suffix tree (or suffix array) for b suffixes of a given text T of length n, using only O(b) words of space during construction. Attempts at breaking the naive bound of Ω(nb) time for this problem can
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c2b0e866243d9235a4d0a5f2bb9f9161
https://doi.org/10.1007/978-3-642-39206-1_13
https://doi.org/10.1007/978-3-642-39206-1_13