Zobrazeno 1 - 10
of 143
pro vyhledávání: '"Hizanidis Kyriakos"'
Autor:
Koukoutsis, Efstratios, Papagiannis, Panagiotis, Hizanidis, Kyriakos, Ram, Abhay K., Vahala, George, Amaro, Oscar, Gamiz, Lucas I Inigo, Vallis, Dimosthenis
Motivated by the contemporary advances in quantum implementation of non-unitary operations, we propose a new dilation method based on the biorthogonal representation of the non-unitary operator, mapping it to an isomorphic unitary matrix in the ortho
Externí odkaz:
http://arxiv.org/abs/2410.22505
Autor:
Soe, Min, Vahala, George, Vahala, Linda, Ram, Abhay K., Koukoutsis, Efstratios, Hizanidis, Kyriakos
Using the Madelung transformation on a generalized scalar Gross-Pitaevski equation, a nonlinear continuum fluid equations are derived for a classical fluid. A unitary quantum lattice algorithm is then determined as a second order discrete representat
Externí odkaz:
http://arxiv.org/abs/2409.17520
Autor:
Ram Abhay, Hizanidis Kyriakos
Publikováno v:
EPJ Web of Conferences, Vol 277, p 01001 (2023)
The presence of turbulence in the form of large density fluctuations and coherent filamentary structures in the edge region of fusion plasmas has been well documented. Radio frequency waves, launched from structures near the wall of a tokamak, have t
Externí odkaz:
https://doaj.org/article/1b8ad8d1e7984e6cb4a22d63424f1029
Autor:
Koukoutsis, Efstratios, Hizanidis, Kyriakos, Vahala, George, Soe, Min, Vahala, Linda, Ram, Abhay K.
Electromagnetic waves are an inherent part of all plasmas -- laboratory fusion plasmas or astrophysical plasmas. The conventional methods for studying properties of electromagnetic waves rely on discretization of Maxwell equations suitable for implem
Externí odkaz:
http://arxiv.org/abs/2309.12492
In dispersive media, dissipation appears in the Schr\"odinger representation of classical Maxwell equations as a sparse diagonal operator occupying an $r$-dimensional subspace. A first order Suzuki-Trotter approximation for the evolution operator ena
Externí odkaz:
http://arxiv.org/abs/2308.00056
Autor:
Vahala, George, Soe, Min, Koukoutsis, Efstratios, Hizanidis, Kyriakos, Vahala, Linda, Ram, Abhay K.
It is well known that Maxwell equations can be expressed in a unitary Schrodinger-Dirac representation for homogeneous media. However, difficulties arise when considering inhomogeneous media. A Dyson map points to a unitary field qubit basis, but the
Externí odkaz:
http://arxiv.org/abs/2307.13182
Publikováno v:
EPJ Web of Conferences, Vol 203, p 01009 (2019)
The nonlinear interaction of electrons with a high intensity, spatially localized, Gaussian, electro-magnetic wave packet, or beam, in the electron cyclotron range of frequencies is described by the relativistic Lorentz equation. There are two distin
Externí odkaz:
https://doaj.org/article/f97e39f4fc864f0191e7c9ff4b6ebc81
Autor:
Vahala, George, Soe, Min, Vahala, Linda, Ram, Abhay K., Koukoutsis, Efstratios, Hizanidis, Kyriakos
A Dyson map explicitly determines the appropriate basis of electromagnetic fields which yields a unitary representation of the Maxwell equations in an inhomogeneous medium. A qubit lattice algorithm (QLA) is then developed perturbatively to solve thi
Externí odkaz:
http://arxiv.org/abs/2301.13601
A reformulation of Maxwell equations for an inhomogeneous, anisotropic, passive and non-dispersive medium results in a quantum-like Dirac equation that admits unitary time evolution. In contrast to other approaches, there is no a-priori introduction
Externí odkaz:
http://arxiv.org/abs/2209.08523
Autor:
Moro Alessandro, Bruschi Alex, Franke Thomas, Garavaglia Saul, Granucci Gustavo, Grossetti Giovanni, Hizanidis Kyriakos, Tigelis Ioannis, Tran Minh-Quang, Tsironis Christos
Publikováno v:
EPJ Web of Conferences, Vol 157, p 03036 (2017)
A demonstration fusion power plant (DEMO) producing electricity for the grid at the level of a few hundred megawatts is included in the European Roadmap [1]. The engineering design and R&D for the electron cyclotron (EC), ion cyclotron and neutral be
Externí odkaz:
https://doaj.org/article/db47a42af6f4415ca24e529e20774c77