Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Hisanori Ohashi"'
Publikováno v:
Mathematische Nachrichten. 291:2084-2098
Consider an arbitrary automorphism of an Enriques surface with its lift to the covering K3 surface. We prove a bound of the order of the lift acting on the anti-invariant cohomology sublattice of the Enriques involution. We use it to obtain some mod
Publikováno v:
Transactions of the American Mathematical Society. 367:8643-8679
K 3 K3 surfaces with non-symplectic symmetry of order 3 3 are classified by open sets of twenty-four complex ball quotients associated to Eisenstein lattices. We show that twenty-two of those moduli spaces are rational.
Publikováno v:
Science China Mathematics. 58:501-512
We present the complete list of all singularity types on Gorenstein $\mathbb{Q}$-homology projective planes, i.e., normal projective surfaces of second Betti number one with at worst rational double points. The list consists of $58$ possible singular
Autor:
Hisanori Ohashi, Shingo Taki
Publikováno v:
Manuscripta Mathematica. 139:443-471
We use classification of non-symplectic automorphisms of K3 surfaces to obtain a partial classification of log del Pezzo surfaces of index three. We can classify those with "Multiple Smooth Divisor Property", whose definition we will give. Our method
Autor:
Hisanori Ohashi
Publikováno v:
Publications of the Research Institute for Mathematical Sciences. :107-127
We consider the Jacobian Kummer surface $X$ of a genus two curve $C$. We prove that the Hutchinson-Weber involution on $X$ degenerates if and only if the Jacobian $J(C)$ is Comessatti. Also we give several conditions equivalent to this, which include
Autor:
Hisanori Ohashi, Hiroki Ito
Publikováno v:
Michigan Math. J. 63, iss. 1 (2014), 159-188
We present the classification of involutions on Enriques surfaces. We classify those into 18 types with the help of the lattice theory due to Nikulin. We also give all examples of the classification.
25 pages, 42 figures
25 pages, 42 figures
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::df766b901070f35ae373e89b6d901584
http://projecteuclid.org/euclid.mmj/1395234363
http://projecteuclid.org/euclid.mmj/1395234363
Autor:
Hisanori Ohashi, Shigeru Mukai
Publikováno v:
Fields Institute Communications ISBN: 9781461464020
We study a class of Enriques surfaces called of Hutchinson–Gopel type. Starting with the projective geometry of Jacobian Kummer surfaces, we present the Enriques’ sextic expression of these surfaces and their intrinsic symmetry by \(G = C_{2}^{3}
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cc7e74d03a08e17e628cea0a14249224
https://doi.org/10.1007/978-1-4614-6403-7_15
https://doi.org/10.1007/978-1-4614-6403-7_15
Autor:
Hisanori Ohashi
In this paper we discuss the number of Enriques quotients of a fixed K3 surface. We prove the finiteness and unboundedness of the number. We also show an example of Kummer surface of product type where we can successfully classify all the Enriques qu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::19b6a1a270c206a339fca62e035a4a70
http://arxiv.org/abs/0909.5358
http://arxiv.org/abs/0909.5358
Autor:
Hisanori Ohashi
Publikováno v:
Nagoya Math. J. 195 (2009), 165-186
This paper classifies Enriques surfaces whose K3-cover is a fixed Picard-general Jacobian Kummer surface. There are exactly 31 such surfaces. We describe the free involutions which give these Enriques surfaces explicitly. As a biproduct, we show that
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0a3fb360bd84e5c333c2acec44d70713
Publikováno v:
Transactions of the American Mathematical Society; Dec2015, Vol. 367 Issue 12, p8643-8679, 37p