Zobrazeno 1 - 10
of 50
pro vyhledávání: '"Hirotada Kanehisa"'
Autor:
Mayuko Oda, Hirotada Kanehisa
Publikováno v:
Journal of the Meteorological Society of Japan. Ser. II. 97:123-139
Publikováno v:
Journal of the Meteorological Society of Japan. Ser. II. 96:549-564
Autor:
Shusuke Nishimoto, Hirotada Kanehisa
Publikováno v:
Journal of the Meteorological Society of Japan. Ser. II. 96:5-24
Autor:
Hirotada Kanehisa, Sakie Hira
Publikováno v:
Journal of the Meteorological Society of Japan. Ser. II. 93:477-487
Autor:
Hirotada Kanehisa, Mayuko Oda
Publikováno v:
Journal of the Meteorological Society of Japan. Ser. II. 93:425-442
Autor:
Hirotada Kanehisa, Takahiro Ito
Publikováno v:
Journal of the Meteorological Society of Japan. Ser. II. 91:775-788
Autor:
Mayuko Oda, Hirotada Kanehisa
Publikováno v:
Journal of the Meteorological Society of Japan. Ser. II. 89:161-169
The initial value problem of diabatic Rossby waves is analytically solved in a vertical-zonal two-dimensional quasi-geostrophic system on an f-plane. The given basic state is in thermal-wind-balance, and dry baroclinic instability is excluded. The di
Autor:
Hirotada Kanehisa, Mayuko Oda
Publikováno v:
Journal of the Meteorological Society of Japan. Ser. II. 88:227-238
On the basis of buoyancy-vorticity (BV) formulation of Harnik et al. (2008), the initial value problem of vertically propagating gravity waves is analytically solved in a zonal-vertical two-dimensional system. The analytical solutions provide an exam
Autor:
Hirotada Kanehisa, Mayuko Oda
Publikováno v:
Journal of the Meteorological Society of Japan. Ser. II. 87:205-213
In the horizontally 2-dimensional quasi-geostrophic system, we construct analytical solutions of transversely propagating Rossby waves across the basic zonal flow. On the assumption that the basic potential vorticity is piece-wise constant in the mer
Autor:
Hirotada Kanehisa, Mayuko Oda
Publikováno v:
Journal of the Meteorological Society of Japan. Ser. II. 87:505-511
In normal mode analysis, the unstable mode grows as an exponential function of time, and the stable mode oscillates as a trigonometric function of time. At a critical point of the relevant parameter space, the mode becomes marginally unstable. The ma