Zobrazeno 1 - 10
of 263
pro vyhledávání: '"Hiroshi Mikawa"'
Autor:
Akiko, YATA, Hiroshi, MIKAWA, Rie, KANAI, Kazuko, INOUE, Midori, KASAGARA, Machiko, HAYASE, Yasue, MORIKI, Megumi, FUZIHARA, Kumi, HASEGAWA, Mamie, KATSUBE
Publikováno v:
島根県立大学出雲キャンパス紀要. 15:73-80
遺族会は,子どもを亡くした家族を対象に同じ経験を持つ家族が思い出を分かち合い,理解し,支え合い,心の癒しの場となることを目的に,1999年12月に立ち上げ,毎月1回の開催を目標
Autor:
Hiroshi Mikawa, Temenoujka Peneva
Publikováno v:
Studia Scientiarum Mathematicarum Hungarica. 46:345-354
Let A, ɛ > 0 be arbitrary. Suppose that x is a sufficiently large positive number. In this paper we prove that the number of integers n ∈ ( x, x + H ], satisfying some natural conditions, which cannot be represented as the sum of five cubes of pri
Autor:
Temenoujka Peneva, Hiroshi Mikawa
Publikováno v:
Archiv der Mathematik. 84:239-248
We prove two average results on the distribution of primes in arithmetic progressions to widely separated moduli, one of which improves upon Elliott’s work [2].
Autor:
Hiroshi Mikawa
Publikováno v:
Tsukuba J. Math. 17, no. 2 (1993), 299-310
In 1923 G. H. Hardy and J. E. Littlewood [3] conjectured that every large integer, not being a square, may be expressed as the sum of a prime and a square. Let v(n) be the number of representationf of an integer n in this manner. ...
Autor:
Hiroshi Mikawa
Publikováno v:
Tsukuba J. Math. 16, no. 2 (1992), 377-387
Let u amd a be coprime positive integers. Put, for a non-zero integer k, ψ(x; q, a, 2k)=Σ Λ(m)Λ(n) where Λ is the von Mangoldt function. It is expected that, provided (a+2k, q)=1, ...
Autor:
Hiroshi Mikawa
Publikováno v:
Tsukuba J. Math. 15, no. 1 (1991), 31-40
Let π(x; q, a)denote the number of primes not exceeding x and being congruent to a modulo q. In 1936 P. Turan [6] showed that, under the extended Riemann hypothesis, ...
Autor:
Hiroshi Mikawa
Publikováno v:
Tsukuba J. Math. 14, no. 1 (1990), 167-184
for any fixed non-zero integer a and almost-all moduli q with {q, a)=l. His argument based upon the weighted linear sieve and the Brun-Titchmarsh theorem on average, which are due to H. E. Richert [10] and C. Hooley [4], respectively. H. Iwaniec's fu
Autor:
Hiroshi Mikawa
Publikováno v:
Tsukuba J. Math. 25, no. 1 (2001), 121-153
with some absolute constant L, vide [16, Kap. X]. Many works have been done to obtain an explicit value of this Linnik constant. The best known result is L = 5.5 due to D. R. Heath-Brown [14]. The Bombieri-Vinogradov theorem, see [7,§28], has the sa
Autor:
Hiroshi Mikawa
Publikováno v:
Tsukuba J. Math. 24, no. 2 (2000), 351-360
with a wide uniformity in real a, where A is the von Mangoldt function and, for real 6, e{6) = exp(2niO). By using a combinatrial identity, R. C. Vaughan presented an elegant simple argument on it, see [2], for instance. J.-r.Chen's theorem on the bi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eb3c4b84660680bd9e1907aa03859f6c
http://projecteuclid.org/euclid.tkbjm/1496164156
http://projecteuclid.org/euclid.tkbjm/1496164156
Autor:
Hiroshi Mikawa
Publikováno v:
Tsukuba J. Math. 24, no. 2 (2000), 361-385