Zobrazeno 1 - 10
of 66
pro vyhledávání: '"Hiroshi Fujimura"'
Publikováno v:
Lecture Notes in Electrical Engineering ISBN: 9789811593222
IWSDS
IWSDS
This paper proposes a transfer learning algorithm for end-to-end dialogue state tracking (DST) to handle new slots with a small set of training data, which has not yet been discussed in the literature on conventional approaches. The goal of transfer
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::11e2f5d481db2b0f73f5ff590e3c882b
https://doi.org/10.1007/978-981-15-9323-9_5
https://doi.org/10.1007/978-981-15-9323-9_5
Publikováno v:
Transactions of the Japanese Society for Artificial Intelligence. 37:IDS-D_1
Publikováno v:
Lecture Notes in Electrical Engineering ISBN: 9789811583940
IWSDS
IWSDS
This paper proposes a fully data-driven approach to dialog state tracking (DST) that can handle new slot values not seen during training. The approach is based on a long short-term memory recurrent neural network with an attention mechanism. Unlike w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::bdb4fc47f9ba8edca051508e667c65e5
https://doi.org/10.1007/978-981-15-8395-7_9
https://doi.org/10.1007/978-981-15-8395-7_9
Publikováno v:
ICPRAM
Publikováno v:
IEEJ Transactions on Fundamentals and Materials. 137:236-241
Publikováno v:
INTERSPEECH
Publikováno v:
Lecture Notes in Electrical Engineering ISBN: 9789811394423
Recently, discriminative models using recurrent neural networks (RNNs) have shown good performance for dialog state tracking (DST). However, the models have difficulty in handling new dialog states unseen in model training. This paper proposes a full
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a1b123e8b0d0f10c3f6296050ba4ce56
https://doi.org/10.1007/978-981-13-9443-0_7
https://doi.org/10.1007/978-981-13-9443-0_7
Publikováno v:
SLT
This paper proposes an approach to detecting-of-domain slot values from user utterances in spoken dialogue systems based on contexts. The approach detects keywords of slot values from utterances and consults domain knowledge (i.e., an ontology) to ch
Publikováno v:
APSIPA
Complex-valued neural networks (CVNNs) are well suited to speech signal processing because they can naturally represent amplitude and phase. In this paper, we explore applying an acoustic model with multiple complex-valued layers (multiple-CVNN-AM) a
Autor:
Catalin-Tudor Zorila, Euihyun Kim, Cong-Thanh Do, Petko N. Petkov, Hiroshi Fujimura, Yannis Stylianou, Takehiko Kagoshima, Daichi Hayakawa, Rama Doddipatla
Publikováno v:
5th International Workshop on Speech Processing in Everyday Environments (CHiME 2018).