Zobrazeno 1 - 10
of 58
pro vyhledávání: '"Hironaka, Eriko"'
Autor:
Hironaka, Eriko, Tsang, Chi Cheuk
We show that given a fully-punctured pseudo-Anosov map $f:S \to S$ whose punctures lie in at least two orbits under the action of $f$, the expansion factor $\lambda(f)$ satisfies the inequality $\lambda(f)^{|\chi(S)|} \ge \mu^4 \approx 6.85408$, wher
Externí odkaz:
http://arxiv.org/abs/2210.13418
Autor:
Hironaka, Eriko
The Epstein deformation space parameterizes marked rational maps with prescribed combinatorial and dynamical structure. For the family of quadratic rational maps with a periodic critical cycle of order 4 and an extra critical point not lying in this
Externí odkaz:
http://arxiv.org/abs/1902.10760
Autor:
Hironaka, Eriko, Koch, Sarah
Let $f:(\mathbb{P}^1,P)\to(\mathbb{P}^1,P)$ be a postcritically finite rational map with postcritical set $P$. William Thurston showed that $f$ induces a holomorphic pullback map $\sigma_f:\mathcal{T}_P\to\mathcal{T}_P$ on the Teichm\"uller space ${\
Externí odkaz:
http://arxiv.org/abs/1602.07378
Autor:
Hironaka, Eriko, Liechti, Livio
Publikováno v:
Michigan Math. J. 65 (2016), no. 4, 799-812
Alternating-sign Hopf plumbing along a tree yields fibered alternating links whose homological monodromy is, up to a sign, conjugate to some alternating-sign Coxeter transformation. Exploiting this tie, we obtain results about the location of zeros o
Externí odkaz:
http://arxiv.org/abs/1506.02000
Autor:
Hironaka, Eriko
This note gives a brief survey of the minimum dilatation problem for pseudo-Anosov mapping classes, and the first explicit train track description of an infinite family of pseudo-Anosov mapping classes with orientable stable foliations and the conjec
Externí odkaz:
http://arxiv.org/abs/1403.2987
Let $\phi \in \mbox{Out}(F_n)$ be a free group outer automorphism that can be represented by an expanding, irreducible train-track map. The automorphism $\phi$ determines a free-by-cyclic group $\Gamma=F_n \rtimes_\phi \mathbb Z,$ and a homomorphism
Externí odkaz:
http://arxiv.org/abs/1310.7533
We determine the asymptotic behavior of the optimal Lipschitz constant for the systole map from Teichmuller space to the curve complex.
Externí odkaz:
http://arxiv.org/abs/1212.4432
Autor:
Hironaka, Eriko
Thurston's fibered face theory allows us to partition the set of pseudo-Anosov mapping classes on different compact oriented surfaces into subclasses with related dynamical behavior. This is done via a correspondence between the rational points on fi
Externí odkaz:
http://arxiv.org/abs/1212.3197
Autor:
Hironaka, Eriko
We define a generalization of Coxeter graphs and an associated Coxeter system and Coxeter mapping class. These can be used to construct periodic Coxeter mapping classes on surfaces with arbitrarily large genus, preserving lots of symmetries. The peri
Externí odkaz:
http://arxiv.org/abs/1110.1013
Autor:
Hironaka, Eriko
In this paper we show that to each planar line arrangement defined over the real numbers, for which no two lines are parallel, one can write down a corresponding relation on Dehn twists that can be read off from the combinatorics and relative locatio
Externí odkaz:
http://arxiv.org/abs/1107.0476