Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Hiroki Sumida"'
Publikováno v:
Chemistry Letters; Feb2024, Vol. 53 Issue 2, p1-4, 4p
Publikováno v:
Bulletin of the Chemical Society of Japan. 95:1220-1227
Publikováno v:
Journal of the Mathematical Society of Japan. 74(3):945-972
Let p be an odd prime number and let 2e+1 be the highest power of 2 dividing p − 1. For 0 ≤ n ≤ e, let kn be the real cyclic field of conductor p and degree 2n. For a certain imaginary quadratic field L0, we put Ln = L0kn. For 0 ≤ n ≤ e −
Publikováno v:
Chemical Science. 13:7560-7565
Ionic liquids (ILs) are salts with an extremely low melting point. Substantial efforts have been made to address their low melting point from the enthalpic standpoint (
Autor:
Hiroki Sumida-Takahashi
Publikováno v:
Arnold Mathematical Journal.
In order to discuss the validity of the Kummer-Vandiver conjecture, we consider a generalized problem associated to the conjecture. Let p be an odd prime number and ζp a primitive p-th root of unity. Using new programs, we compute the Iwasawa invari
Publikováno v:
Tokyo Journal of Mathematics. 44(1):157-173
Let $p=2^{e+1}q+1$ be an odd prime number with $2 \nmid q$. Let $K$ be the imaginary cyclic field of conductor $p$ and degree $2^{e+1}$. We denote by $\mathcal{F}$ the imaginary quadratic subextension of the imaginary $(2,\,2)$-extension $K(\sqrt{2})
Publikováno v:
The Journal of Physical Chemistry B. 124:10465-10476
The rotational dynamics of carbon monoxide (CO) in ionic liquids (ILs) was investigated by nuclear magnetic resonance (NMR) relaxation measurements and molecular dynamics (MD) simulations. NMR spin-lattice relaxation time measurements were performed
Publikováno v:
The Proceedings of the Materials and Mechanics Conference. 2021:GS14
Publikováno v:
Journal de Théorie des Nombres de Bordeaux. 28:325-345
Let ℓ be an odd prime number. Let K/Q be a real cyclic extension of degree ℓ, AK the 2-part of the ideal class group of K, and H/K the class field corresponding to AK/A2K. Let Kn be the nth layer of the cyclotomic Z2-extension over K. We consider
Publikováno v:
International Journal of Number Theory. 10:283-296
Let p be an odd prime number, Kn = Q(ζpn+1) the pn+1th cyclotomic field and [Formula: see text] the relative class number of Kn. Fixing an integer d ∈ Z with [Formula: see text], we denote by Ln the imaginary quadratic subextension of the imaginar