Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Hiranya Kishore Dey"'
Publikováno v:
Enumerative Combinatorics and Applications, Vol 4, Iss 1, p Article #S2R3 (2023)
Externí odkaz:
https://doaj.org/article/b10b4c0556444acea66a5a2e2bbfb3ac
Autor:
Angsuman Das, Hiranya Kishore Dey
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol vol. 24, no. 1, Iss Graph Theory (2022)
The determining number of a graph $G = (V,E)$ is the minimum cardinality of a set $S\subseteq V$ such that pointwise stabilizer of $S$ under the action of $Aut(G)$ is trivial. In this paper, we provide some improved upper and lower bounds on the dete
Externí odkaz:
https://doaj.org/article/120937b1c4844067aae2d8a25367bc80
Autor:
Hiranya Kishore Dey
Publikováno v:
Archiv der Mathematik. 120:457-466
Publikováno v:
Linear and Multilinear Algebra. :1-11
Autor:
Sudip Bera, Hiranya Kishore Dey
Publikováno v:
Journal of Group Theory.
For a group 𝐺, the enhanced power graph of 𝐺 is a graph with vertex set 𝐺 in which two distinct vertices x , y x,y are adjacent if and only if there exists an element 𝑤 in 𝐺 such that both 𝑥 and 𝑦 are powers of 𝑤. The proper e
Publikováno v:
Graphs and Combinatorics. 37:591-603
This paper deals with the vertex connectivity of enhanced power graphs of finite groups. We classify all abelian groups G such that the vertex connectivity of enhanced power graph of G is 1. We derive an upper bound for the vertex connectivity of the
Publikováno v:
Annals of Combinatorics. 24:711-738
The Eulerian polynomial $$ \mathrm {AExc}_n(t)$$ enumerating excedances in the symmetric group $$\mathfrak {S}_n$$ is known to be gamma positive for all n. When enumeration is done over the type B and type D Coxeter groups, the type B and type D Eule
Eulerian Central Limit Theorems and Carlitz identities in positive elements of Classical Weyl Groups
Central Limit Theorems are known for the Eulerian statistic "descent" (or "excedance") in the symmetric group $\SSS_n$. Recently, Fulman, Kim, Lee and Petersen gave a Central Limit Theorem for "descent" over the alternating group $\AAA_n$ and also ga
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fa5dce938e81f5bc72b0229a9eb74e91
The classical Eulerian polynomials $A_n(t)$ are known to be gamma positive. Define the positive Eulerian polynomial $A_n^+(t)$ as the polynomial obtained when we sum descents over the alternating group. We show that $A_n^+(t)$ is gamma positive iff $
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::53e17441301ea3cb46629e0503fee7f3
http://arxiv.org/abs/1812.01927
http://arxiv.org/abs/1812.01927