Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Hira, Sanchit"'
Autor:
Hira, Sanchit, Singh, Digvijay, Kim, Tae Soo, Gupta, Shobhit, Hager, Gregory, Sikder, Shameema, Vedula, S. Swaroop
Purpose: The objective of this investigation is to provide a comprehensive analysis of state-of-the-art methods for video-based assessment of surgical skill in the operating room. Methods: Using a data set of 99 videos of capsulorhexis, a critical st
Externí odkaz:
http://arxiv.org/abs/2205.06416
Autor:
Babier, Aaron, Mahmood, Rafid, Zhang, Binghao, Alves, Victor G. L., Barragán-Montero, Ana Maria, Beaudry, Joel, Cardenas, Carlos E., Chang, Yankui, Chen, Zijie, Chun, Jaehee, Diaz, Kelly, Eraso, Harold David, Faustmann, Erik, Gaj, Sibaji, Gay, Skylar, Gronberg, Mary, Guo, Bingqi, He, Junjun, Heilemann, Gerd, Hira, Sanchit, Huang, Yuliang, Ji, Fuxin, Jiang, Dashan, Giraldo, Jean Carlo Jimenez, Lee, Hoyeon, Lian, Jun, Liu, Shuolin, Liu, Keng-Chi, Marrugo, José, Miki, Kentaro, Nakamura, Kunio, Netherton, Tucker, Nguyen, Dan, Nourzadeh, Hamidreza, Osman, Alexander F. I., Peng, Zhao, Muñoz, José Darío Quinto, Ramsl, Christian, Rhee, Dong Joo, Rodriguez, Juan David, Shan, Hongming, Siebers, Jeffrey V., Soomro, Mumtaz H., Sun, Kay, Hoyos, Andrés Usuga, Valderrama, Carlos, Verbeek, Rob, Wang, Enpei, Willems, Siri, Wu, Qi, Xu, Xuanang, Yang, Sen, Yuan, Lulin, Zhu, Simeng, Zimmermann, Lukas, Moore, Kevin L., Purdie, Thomas G., McNiven, Andrea L., Chan, Timothy C. Y.
We establish an open framework for developing plan optimization models for knowledge-based planning (KBP) in radiotherapy. Our framework includes reference plans for 100 patients with head-and-neck cancer and high-quality dose predictions from 19 KBP
Externí odkaz:
http://arxiv.org/abs/2202.08303
We introduce a method that allows to automatically segment images into semantically meaningful regions without human supervision. Derived regions are consistent across different images and coincide with human-defined semantic classes on some datasets
Externí odkaz:
http://arxiv.org/abs/2107.12518
We present an approach to perform supervised action recognition in the dark. In this work, we present our results on the ARID dataset. Most previous works only evaluate performance on large, well illuminated datasets like Kinetics and HMDB51. We demo
Externí odkaz:
http://arxiv.org/abs/2107.05202
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Applied Intelligence; May2021, Vol. 51 Issue 5, p2864-2889, 26p
Autor:
Hira S; Laboratory for Computational Sensing & Robotics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA., Singh D; Department of Computer Science, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA., Kim TS; Department of Computer Science, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.; Malone Center for Engineering in Healthcare, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA., Gupta S; Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India., Hager G; Laboratory for Computational Sensing & Robotics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.; Department of Computer Science, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.; Malone Center for Engineering in Healthcare, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA., Sikder S; Laboratory for Computational Sensing & Robotics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.; Malone Center for Engineering in Healthcare, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.; Wilmer Eye Institute, Johns Hopkins University School of Medicine, 615 N. Wolfe Street, Baltimore, MD, 21287, USA., Vedula SS; Malone Center for Engineering in Healthcare, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA. swaroop@jhu.edu.
Publikováno v:
International journal of computer assisted radiology and surgery [Int J Comput Assist Radiol Surg] 2022 Oct; Vol. 17 (10), pp. 1801-1811. Date of Electronic Publication: 2022 May 30.